KDD'25 | 生成式拍卖:感知排列外部性的整页优化机制

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
AITNT-国内领先的一站式人工智能新闻资讯网站 搜索
KDD'25 | 生成式拍卖:感知排列外部性的整页优化机制
5675点击    2024-12-26 15:38

从“先预估后分配”的判别式方法,到直接面向最终拍卖结果的生成式方法,生成式模型能否为在线广告的拍卖机制优化带来持续增量?


本文介绍阿里妈妈展示广告机制策略团队在 AIGA(AI-Generated Auction)方向的前沿探索-生成式拍卖研究工作。


基于该项工作整理的论文已被KDD’25 Research Track接收。


摘要


广告拍卖机制设计作为在线广告系统的重要一环,在持续优化广告主和平台收益方面起着至关重要的作用。传统的广义二价拍卖(GSP)等拍卖机制依赖于点击率分离假设(将广告点击率拆分为广告自身质量分和广告位曝光权重的乘积),忽略了页面中同时展示的其它商品的影响,即外部性影响。


近年来,基于深度学习的拍卖机制显著增强了对高维上下文特征的编码能力,但是现有方法仍受限于“先预估后分配”的设计范式。这种范式只能建模参竞广告集合内的外部性,无法捕捉最终分配结果的整页上下文信息(即排列外部性),因此难以收敛到全局最优解。本文系统分析了在排列外部性影响下的最优拍卖机制,在理论最优解的基础上,研究团队提出了首个使用生成式模型建模排列外部性的广告拍卖机制-生成式拍卖(Contextual Generative Auction, CGA)


该框架通过自回归模型生成广告分配结果,并将激励兼容(Incentive Compatibility, IC)条件量化为最小化事后后悔(ex-post regret),实现端到端学习最优计费规则。大规模离线实验和在线 A/B 实验表明 CGA 能显著提升平台收入等关键指标,同时有效逼近理论最优拍卖的结果。


论文:Contextual Generative Auction with Permutation-level Externalities for Online Advertising


作者:Ruitao Zhu, Yangsu Liu, Dagui Chen, Zhenjia Ma, Chufeng Shi, Zhenzhe Zheng, Jie Zhang, Jian Xu, Bo Zheng, Fan Wu


下载:https://arxiv.org/abs/2412.11544


引言


在线广告系统的最优拍卖机制旨在最大化平台期望收入,同时满足经济学性质,包括激励兼容和个体理性(Individual Rationality, IR),并且需要满足系统在线部署的计算时延要求。IC 条件要求广告主真实报价最大化其自身效用,IR条件要求广告主的效用非负。


在典型的点击计费(Cost-per-Click, CPC)多坑广告场景下,广告拍卖机制的效果依赖于对广告点击率(CTR)的预估准度。广泛使用的 GSP 等机制使用精排阶段的单点预估 CTR,忽略了页面展示的其它商品的影响。而实际场景中,用户浏览的页面包括多个商品,用户在决策前通常会对不同商品进行比较,因此同时曝光的其它商品会对目标广告的 CTR 产生影响,称为“外部性” [1]。


基于深度学习的拍卖机制,如 Deep Neural Auction(DNA [2])和 Score Weighted VCG(SW-VCG [3])等工作考虑使用深度网络刻画外部性影响以提升平台收入。然而无论是 DNA 采用的先预估广告 rankscore 再进行排序,还是 SW-VCG 使用的先预估单调性分数再求解二部图最大匹配,这些方法本质上都受到“先预估后分配”(allocation-after-prediction)范式的局限,预估时的上下文信息与分配后的最终上下文信息不一致,因此模型只能捕捉到粗粒度的广告候选集层面的外部性。另一方面,Neural Multi-slot Auction(NMA [4])等机制采用类似 VCG 拍卖的方式,遍历所有可能的排列结果以求解最优分配,但是极高的计算复杂度使其难以应用于在线场景。


根据 Myerson 拍卖理论 [5],拍卖机制的 IC 条件要求广告主获得的期望价值关于其出价满足非递减关系。大多数现有方法通过保证排序公式中出价的权重为正,使得广告主提高出价能获得相同或更前置的广告位。但是在排列外部性的影响下,即使广告候选集保持不变,将广告分配到的坑位前置反而可能导致其期望价值下降。图 1 给出了不同广告的分坑位 [点击率 * 曝光率](表示 CPC 机制下的广告主期望价值)的实验数据,二者的关系并不满足单调性。因此,在排列外部性影响下,如何设计满足激励兼容条件的分配规则是一个非平凡的问题。


KDD'25 | 生成式拍卖:感知排列外部性的整页优化机制

图1:广告分坑位 [点击率 * 曝光率]


本文旨在探索在排列外部性影响下,满足 IC 和 IR 约束的收入最大化广告拍卖机制的基本形式和高效实现。我们首先给出系统性的理论分析,证明最优解保留 Myerson 最优拍卖的基本形式,即分配规则和计费规则可以进行解耦。在理论最优解的基础上,引入经典的生成器-评估器(Generator-Evaluator)架构,构建感知排列外部性的生成式拍卖。最后,进行工业数据集上的离在线实验,在多维度指标上对比现有的拍卖机制研究工作。


问题建模与理论分析


KDD'25 | 生成式拍卖:感知排列外部性的整页优化机制


KDD'25 | 生成式拍卖:感知排列外部性的整页优化机制


KDD'25 | 生成式拍卖:感知排列外部性的整页优化机制


生成式拍卖


前文提到,现有的基于深度学习的拍卖机制受限于“先预估后分配”的设计范式,无法感知排列级外部性。我们提出的生成式拍卖引入了生成器-评估器的基本架构,模型整体架构如图 2 所示。生成器采用自回归模型,逐坑位感知已经决策完成的序列信息,生成广告序列。评估器捕捉广告序列中的商品相互影响,对精排阶段的单点 pCTR 结合序列上下文信息进行校准,在训练时为生成器提供奖励信号。在线推理时,仅部署生成器,以保证线上推理时延。此外,我们构建了 PaymentNet 模块,通过优化 ex-post regret 学习最优计费规则。


KDD'25 | 生成式拍卖:感知排列外部性的整页优化机制

图2:感知排列外部性的生成式拍卖整体框架


1、生成器


根据理论推导的最优分配形式,生成器的目标为根据个参竞广告,生成长度为的广告序列,以最大化期望虚拟福利。我们构建的生成器包括两部分:满足排列不变性(permutation-invariant)的集合编码器,以及满足排列同变性(permutation-equivariant)的自回归解码器。排列不变性指的是改变模型输入元素的排列顺序不会改变模型输出的结果,排列同变性指的是输入元素的排列顺序改变会引起输出结果的排列顺序产生相同的改变。前者保证输入模型的参竞广告顺序不影响分配结果,后者在自动机制设计 [7-9] 的研究工作中广泛应用,[10] 进一步论证了排列同变性可以提升机制的泛化性。


KDD'25 | 生成式拍卖:感知排列外部性的整页优化机制


2、评估器


KDD'25 | 生成式拍卖:感知排列外部性的整页优化机制


3、计费模块


KDD'25 | 生成式拍卖:感知排列外部性的整页优化机制


4、训练流程


KDD'25 | 生成式拍卖:感知排列外部性的整页优化机制


KDD'25 | 生成式拍卖:感知排列外部性的整页优化机制


实验


我们在淘宝展示广告场景的真实数据集上以及线上环境中评估生成式拍卖的有效性。对比的基线方法按照外部性建模的粒度可以分为三类:


  • 无外部性建模:GSP 广义二价拍卖。


  • 集合粒度外部性建模:DNA [2];SW-VCG [3]。


  • 排列级外部性建模:基于枚举实现的 VCG 拍卖;EdgeNet [12];理论推导的最优拍卖机制。


1、离线实验


KDD'25 | 生成式拍卖:感知排列外部性的整页优化机制


KDD'25 | 生成式拍卖:感知排列外部性的整页优化机制

表1:离线对比实验。指标后的百分比增减量表示基线方法相比 CGA 的相对值


2、在线实验


我们在展示广告场景进行了线上 A/B 实验,基线为线上使用的 DNA [2] 机制。实验结果表明,生成式拍卖在推理时延仅增加 1.6% 的情况下,平台收入指标 RPM 提高了 3.2%,CTR 提升 1.4%,成交 GMV 提升6.4%,广告主 ROI 提升 3.5%。实验结果表明生成式拍卖带来的收入提升不是由于直接抬高广告主计费,而是通过感知排列级外部性优化广告分配,实现更精准的广告触达,反映于 CTR、GMV 以及广告主 ROI 的提升。


总结


本文从广告拍卖机制中的排列级外部性影响出发,打破“先预估后分配”的设计范式,针对在线广告场景提出了感知排列外部性的生成式拍卖。结果表明,经典的 Myerson 拍卖在迁移到排列级外部性的形式后,仍然保持其最优性。


基于这一结论,团队设计的生成式拍卖架构将分配和计费模块解耦。在具体实现上,构建了基于生成器-评估器的自回归生成式结构来优化分配,并将 IC 约束量化为最小化期望事后后悔来学习最优支付规则。工业级场景的离在线实验验证了生成式拍卖的有效性。值得注意的是,提出的生成式拍卖框架并不局限于特定的生成式模型。


未来的研究工作将探索引入更加高效的生成式架构,并在拍卖机制中统一分配来自多渠道的商品,例如自然结果与广告的融合混排。


关于团队


阿里妈妈展示广告机制策略算法团队,致力于不断优化阿里展示广告技术体系,驱动业务增长,推动技术持续创新;不断升级工程架构以支撑阿里妈妈展示广告业务稳健&高效迭代,深挖商业化价值并优化广告主投放效果,孵化创新产品和创新商业化模式,优化广告生态健壮性;驱动机制升级,并已迈入 Deep Learning for Mechanisms 时代,团队创新工作发表于 KDD、WWW、ICML、CIKM、WSDM、AAMAS、AAAI 等领域知名会议。在此真诚欢迎有ML背景的同学加入!


投递简历邮箱(请注明-展示广告机制策略):


alimama_tech@service.alibaba.com


参考文献

[1] Arpita Ghosh and Mohammad Mahdian. Externalities in online advertising. WWW’08.

[2] Xiangyu Liu, Chuan Yu, Zhilin Zhang, Zhenzhe Zheng, Yu Rong, Hongtao Lv, Da Huo, Yiqing Wang, Dagui Chen, Jian Xu, Fan Wu, Guihai Chen, and Xiaoqiang Zhu. Neural auction: End-to-end learning of auction mechanisms for e-commerce advertising. KDD’21.

[3] Ningyuan Li, Yunxuan Ma, Yang Zhao, Zhijian Duan, Yurong Chen, Zhilin Zhang, Jian Xu, Bo Zheng, and Xiaotie Deng. Learning-Based Ad Auction Design with Externalities: The Framework and A Matching-Based Approach. KDD’23.

[4] Guogang Liao, Xuejian Li, Ze Wang, Fan Yang, Muzhi Guan, Bingqi Zhu, Yongkang Wang, Xingxing Wang, and Dong Wang. 2022. NMA: Neural Multi-slot Auctions with Externalities for Online Advertising. arXiv preprint arXiv:2205.10018 (2022).

[5] Roger B Myerson. 1981. Optimal auction design. Mathematics of operations research 6, 1 (1981), 58–73.

[6] Paul Dütting, Zhe Feng, Harikrishna Narasimhan, David Parkes, and Sai Srivatsa Ravindranath. Optimal auctions through deep learning. ICML’19.

[7] Zhijian Duan, Haoran Sun, Yurong Chen, and Xiaotie Deng. A scalable neural network for dsic affine maximizer auction design. NeurIPS’24.

[8] Dmitry Ivanov, Iskander Safiulin, Igor Filippov, and Ksenia Balabaeva. Optimal-er auctions through attention. NeurIPS’22.

[9] Jad Rahme, Samy Jelassi, Joan Bruna, and S Matthew Weinberg. A permutation-equivariant neural network architecture for auction design. AAAI’21.

[10] Tian Qin, Fengxiang He, Dingfeng Shi, Wenbing Huang, and Dacheng Tao. Benefits of permutation-equivariance in auction mechanisms. NeurIPS’22.

[11] Yufei Feng, Binbin Hu, Yu Gong, Fei Sun, Qingwen Liu, and Wenwu Ou. 2021. GRN: Generative Rerank Network for Context-wise Recommendation. arXiv preprint arXiv:2104.00860 (2021).

[12] Guangyuan Shen, Shengjie Sun, Dehong Gao, Duanxiao Song, Libin Yang, Zhen Wang, Yongping Shi, and Wei Ning. EdgeNet: Encoder-decoder generative Network for Auction Design in E-commerce Online Advertising. CIKM’23.


文章来自微信公众号“量子位”,作者“允中”


KDD'25 | 生成式拍卖:感知排列外部性的整页优化机制

关键词: AI , AI拍卖 , KDD’25 , 人工智能
AITNT-国内领先的一站式人工智能新闻资讯网站
AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
AI数据分析

【开源免费】DeepBI是一款AI原生的数据分析平台。DeepBI充分利用大语言模型的能力来探索、查询、可视化和共享来自任何数据源的数据。用户可以使用DeepBI洞察数据并做出数据驱动的决策。

项目地址:https://github.com/DeepInsight-AI/DeepBI?tab=readme-ov-file

本地安装:https://www.deepbi.com/

【开源免费airda(Air Data Agent)是面向数据分析的AI智能体,能够理解数据开发和数据分析需求、根据用户需要让数据可视化。

项目地址:https://github.com/hitsz-ids/airda