“取消今晚所有计划!”,许多AI开发者决定不睡了。
只因首个开源MoE大模型刚刚由Mistral AI发布。
MoE架构全称专家混合(Mixture-of-Experts),也就是传闻中GPT-4采用的方案,可以说这是开源大模型离GPT-4最近的一集了。
没有发布会、没有宣传视频,只靠一个磁力链接,就产生如此轰动效果。
具体参数还得是网速快的人下载完之后,从配置文件里截图发出来的:
7B参数x8个专家,对每个token选择前两个最相关的专家来处理。
以至于OpenAI创始成员Karpathy都吐槽,是不是少了点什么?
怎么缺了一个那种排练很多次的专业范视频,大谈特谈AI变革啊。
至于吐槽的是谁,懂得都懂了。
以及他还解释了为什么AI社区这几天如此活跃:最大的深度学习会议NeurIPS即将在下周开启。
为何这款开源MoE模型如此受关注?
因为其前身Mistral-7B本来就是开源基础模型里最强的那一档,经常可以越级挑战13B、34B。
并且Mistral-7B以宽松的Apache-2.0开源协议发布,可免费商用,这次新模型很可能沿用这个协议。
在多个评测排行榜上,基于Mistral-7B微调的Zephyr-7B-beta都是前排唯一的7B模型,前后都是规模比他大得多的模型。
LLMSYS Chatbot Arena上,Zephry-7B-beta目前排第12。
AlpacaEval上,也排到第15。
目前这个新的MoE模型连个正式名字都还没有,社区一般称呼它为Mistral-7Bx8 MoE。
但在大家期待的期待中,新MoE模型对比单体Mistral-7B的提升幅度,就应该像GPT-4对比GPT-3.5那样。
但是注意了,有人提醒大家MoE对于本地运行来说不是太友好,因为更占内存
但更适合部署在云端,跨设备专家并行,给公司处理并发需求带来成本优势。
行动比较快的公司是前PyTorch成员出走创办的fireworks.ai。
第一次尝试、没有任何优化的情况下,需要两张80GB内存的卡,优化版本即将推出。
Replicate上也有了可试玩版本,简单试用发现中文水平也不错。
其实Mistral AI也为大家准备了官方配套代码,使用了斯坦福去年发布的轻量级MoE库Megablocks。
Mistral AI由前DeepMind、前Meta科学家创办。
刚刚完成一轮4.87亿美元的新融资,最新估值逼近20亿美元,已晋升独角兽。
三位联合创始人中,CEO Arthur Mensch此前在DeepMind巴黎工作。
CTO Timothée Lacroix和首席科学家Guillaume Lample则在Meta共同参与过Llama系列的研发,Lample是通讯作者之一。
Arthur Mensch曾在接受采访时谈到,让模型变小是支持Agent发展的路径之一。
如果能把计算成本降低100倍,就能构建起更多有意思的应用。
Mistral AI成立于今年5月,种子轮融资1.13亿美元。
9月底,Mistral AI以磁力链接的形式发布第一个开源模型Mistral-7B,当时很多开发者试用后都觉得Llama-2不香了。
12月初,Mistral AI再次甩出开源MoE模型磁力链接,再次掀起一波热潮。
这就是公司官号仅有的几次发言。
不少人都拿来和最近谷歌的过度宣传做对比。
最新的梗图:磁力链接就是新的arXiv。
参考链接:
[1]https://x.com/MistralAI/status/1733150512395038967?s=20
[2]https://github.com/mistralai/megablocks-public
[3]https://replicate.com/nateraw/mixtral-8x7b-32kseqlen
【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。
项目地址:https://github.com/Significant-Gravitas/AutoGPT
【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。
项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md
【开源免费】XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。它帮助开发者提供一个简单易用的平台,可以对大语言模型(LLM)和多模态图文模型(VLM)进行预训练和轻量级微调。XTuner 支持多种微调算法,如 QLoRA、LoRA 和全量参数微调。
项目地址:https://github.com/InternLM/xtuner