本文的主要作者来自多伦多大学、Snap Inc.和UCLA的研究团队。第一作者为多伦多大学博士生梁汉文和Snap Inc.的曹军力,他们专注于视频生成以及3D/4D场景生成与重建的研究,致力于创造更加真实、高质量的3D和4D场景。团队成员期待与更多志同道合的研究者们交流与合作。
在人类的认知中,从单张图像中感知并想象三维世界是一项天然的能力。我们能直观地估算距离、形状,猜想被遮挡区域的几何信息。然而,将这一复杂的认知过程赋予机器却充满挑战。最近,来自多伦多大学、Snap Inc. 和 UCLA 的研究团队推出了全新的模型 ——Wonderland,它能够从单张图像生成高质量、广范围的 3D 场景,在单视图 3D 场景生成领域取得了突破性进展。
传统的 3D 重建技术往往依赖于多视角数据或逐个场景 (per-scene) 的优化,且在处理背景和不可见区域时容易失真。为解决这些问题,Wonderland 创新性地结合视频生成模型和大规模 3D 重建模型,实现了高效高质量的大规模 3D 场景生成:
基于单张图和 camera condition,实现视频生成的精准视角控制:
Camera-guided 视频生成模型可以精确地遵循轨迹的条件,生成 3D-geometry 一致的高质量视频,并具有很强的泛化性,可以遵循各种复杂的轨迹,并适用于各种风格的输入图片。
更多的例子:
不同的输入图片,同样的三条相机轨迹,生成的视频:
给定输入图片和多条相机轨迹,生成视频可以深度地探索场景:
基于单张图,利用 LaLRM, Wonderland 可以生成高质量的、广阔的 3D 场景:
(以下展示均为从建立的3DGS Rendering出的结果)
基于单张图和多条相机轨迹,Wonderland 可以深度探索和生成高质量的、广阔的 3D 场景:
Wonderland 的主要特点在于其精确的视角控制、卓越的场景生成质量、生成的高效性和广泛的适用性。实验结果显示,该模型在多个数据集上的表现超越现有方法,包括视频生成的视角控制、视频生成的视觉质量、3D 重建的几何一致性和渲染的图像质量、以及端到端的生成速度均取得了优异的表现:
Wonderland 的出现为视频和 3D 场景的创作提供了一种崭新的解决方案。在建筑设计、虚拟现实、影视特效以及游戏开发等领域,该技术展现了广阔的应用潜力。通过其精准的视频位姿控制和具备广视角、高清晰度的 3D 场景生成能力,Wonderland 能够满足复杂场景中对高质量内容的需求,为创作者带来更多可能性。
尽管模型表现优异,Wonderland 研发团队深知仍有许多值得提升和探索的方向。例如,进一步优化对动态场景的适配能力、提升对真实场景细节的还原度等,都是未来努力的重点。希望通过不断改进和完善,让这一研发思路不仅推动单视图 3D 场景生成技术的进步,也能为视频生成与 3D 技术在实际应用中的广泛普及贡献力量。
文章来微信公众号 “机器之心”