ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
哄哄模拟器的完整复盘,火了,但一度让我很发愁
4736点击    2024-01-22 12:04

24 小时涌入超过 60 万用户,消耗了大模型十几亿 token,发生 2000 万次对话,而事情的起源却是一次吵架。 


需求的起源


几个月前,当时我和女朋友因为我现在已经忘记的原因而有了一些争吵,我一边看着对方骂我的样子,一边把对方想象成一个机器人,头上有个虚拟的进度条,我观察她的反应,假装成我的回应会让她头上的进度条发生变化,然后我就突然想到了一个产品创意:带有数值和反馈系统的基于场景的聊天。


我很快开始构建一个叫哄哄模拟器的 iOS APP,在 APP 内,我把常见的情侣吵架场景放入其中,每次进入一个场景,例如「你吃了对象爱吃的丸子,她生气了」,你都需要在指定聊天次数内将对方(AI)哄好,是否哄好则由「原谅值」决定,其会随着你的每次聊天而发生变化。



很久以来,我已经体验过太多的「聊天AI」了,无论是通用且强大的 ChatGPT还是专注于角色扮演的 Character.ai,他们都很强,但对我来说还是有一个小遗憾:他们只是聊天。


在聊天之外,如果能再加上数值系统和各种判定,那么就可以做出更游戏化的体验,此时大模型不仅负担起了聊天的任务,也会负担起基于聊天来做数值规则的任务,这在大模型出现之前,是不可能的,数值系统也都是按照既定规则来写死的。


开发哄哄模拟器,是我的一次实验,我发现我确实可以让模型输出拟人的回复,也能做好数值的设计。


App 上线之后,我照例在能发的几个地方发了一下,虽然有些响应,但最终用户就几百个人,因为是我业余做的,所以我也没在意,就放在那里没管了。


上周,公司内开始做一些新项目的选型,我也凑过去看了一眼,然后突然意识到,我经常被人误认为是全栈工程师,但其实我连 react 都不会写,这实在脸上无光,于是我准备开始学习 react,我学习新语言一般会直接从项目上手,所以我又一次想到了哄哄模拟器,并准备写一个网页版,来完成我的 react 入门。


学习新语言和开发新产品的过程已经和往日大不相同,在大模型加持的各种代码助手辅助下,我基本上很快就稀里糊涂的写完了第一个版本,并上线了。



哄哄模拟器网页版上线之后,我也发在了几个地方,包括我的微博,即刻,X,还有V2ex,但说实话,都反响平平,虽然我暗自感觉不应该感兴趣的人这么少,但考虑到也没投入啥成本,还顺便学了新东西,倒也不觉得难受。

 

神奇的流量涌入


变化发生在第二天晚上,睡觉前我看了一眼数据,突然发现在线有上百人,我马上通过嵌入的统计代码查看流量来源,但发现都是无法被统计的,这意味着流量应该不是从某个网站链接导入,也不是从搜索引擎,我几乎每一刷新,涌入的用户就还会再增加一点,当晚我观察到接近1点才睡觉。


在我睡觉之前,我还是不知道流量从哪里来,以至于我发了一条动态感叹「像是从黑洞来的」



睡前我最后看了一眼数据,即时在线人数是 2000


第二天早上起床后,我立刻查看数据,发现在线人数已经飙到了 5000,日活用户到了接近 10 万,在短暂的陶醉后,我立马意识到大事不妙,哄哄模拟器背后使用的大模型基于 GPT,我调用了 openai 的 gpt3.5 接口,这里的成本是0.0015美元/1000个token,而一个晚上我就跑了一亿的 token,为此我要付出的是 150 美元



但这只是一个晚上(还包括了大家都在睡觉的凌晨)的数据,如果按照这样的用量趋势持续一天,那我要付出的成本就会是上千美元了。


对于一个很接近玩具且做的很简陋的项目而言,每天几千美元的成本是不可承受之重。与此同时,用户量还在不断增加,几乎每刷新统计页面,就会新增数百人。



我一开始还在新高峰出现时截图,后来就懒得截了,我把精力放到了更紧迫的事情上面:找出用户从哪来,想办法变现,减少 token 消耗。


在网页上,我放置了联系开发者按钮,然后引导到了我的微博,半小时后,开始陆续有新的关注者评论,绝大部分都表示来自 QQ 空间和 QQ 群



我和其中一些用户聊了一下,大概找到了流量来源,起先应该是一个来自QQ空间的帖子介绍了哄哄模拟器,这篇帖子获得了数千次转发,既而又被发到了无数QQ群,并在群友中传播。


这也解答了为啥我一开始找不到流量来源的原因,QQ空间和QQ群都是比较封闭的生态,也无法追踪链接跳转的来源,这里面没有 KOL,传播节点也极其分散。

 

棘手的问题


等我中午时摸清用户来源的时候,用户即时在线已经突破了 2 万,预估的大模型账单也逼近了 1000 美元,我意识到,作为网页,且没有做注册登录的用户系统,即便我加入了广告,也无法平衡大模型的成本,和其它火起来的传统产品(例如羊了个羊)相比,基于大模型的哄哄模拟器,运行成本可能是它们的上千倍。


此时更棘手的一个情况出现了,因为大量的用户同时调用,把 GPT 接口的用量限制直接打满了,每分钟生成的 token 超过了一百万。


这让很多用户无法使用,于是我赶紧更新代码,用了粗暴的办法去降低用户的使用频率:1/2的概率,会提示繁忙,同时在用户完成一局对话后,如果哄哄失败,则必须冷静20秒才能开启下一局。


这样的调整让 TPM (每分钟的模型 token ) 稳在了100万,但很快,在线用户增加到了3万,即便有上面的设置,TPM 也依然被打满,这导致了大概有 1/3 的用户是无法使用的。


此时我选择性忽视了未来的大模型使用账单,一心想支撑下这波用户,于是我又找到了在奇绩创坛的校友尹伯昊,他是猴子无限的创始人,也有深度和 GPT 绑定的大模型相关的业务,他给了我一个API KEY,可以走他们的账号池调用GPT,并且支持极高的 TPM 限额,我将 1/2 的请求分配到了他的API下,此时用户也增长到了 4 万,但因为分流,所以勉强支撑了下来。



token 在两边都极速消耗,很快就在伯昊的账号下就跑了 100 美金的额度。而我自己那边我已经不想去看了。


缓一口气后,我开始尝试用其它模型替代 GPT ,这虽然在成本上不一定更划算,但至少有一些新的可能性,跑了几个差强人意的开源模型后,我尝试了 Moonshot,发现效果还可以,与此同时我刚好前不久加了月之暗面公司负责 API 的同学,于是我心一横,厚着脸皮直接向对方发了消息



 Moonshot 同学很快拉了群和我对接,并慷慨的让我「先试试」,于是我开始进行调试,然后将1/5的模型调用量切给了 Moonshot ,我采集用户行为数据,观察使用不同模型时,进入下一步操作的比例,在接入 Moonshot 大约1小时后,我看了数据,发现和我之前使用的 gpt3.5 相差不大,于是我将切给 Moonshot 的用量逐渐提高。


其实我们也没有谈太多的条件,Moonshot 让我免费使用模型,我肯定也要在页面展示 Moonshot 的品牌信息,但除此之外,要有多少曝光?点击多少次?给我多少token?其实我们都没有谈,在跟对方交流的时候,我感觉双方都抱着开放的心态,像面对一场有趣的实验而不是什么商业合作,我们一起兴致勃勃的观察模型表现,以及用量的波动。


傍晚时,经过多次调试,也确认了这个调用量级没问题后,我将模型调用量全量切到了 Moonshot,此时我问了伯昊,他那边的成本消耗,最终定格到了 340 美元,伯昊没收我钱,而我将用一顿饭回报这次帮忙。



此时是晚上八点半,我终于吃上了当天的第一口饭。然后我打了一把 FIFA。

 

不太意外的意外


打完 FIFA 之后我回到电脑前,发现在线人数开始暴跌,此时我的心情比较复杂,一方面我对数据往下走有本能的失落,但又因为 token 消耗降低而松了一口气。而当我寻找数据下跌原因时,我发现这个原因丝毫不让人意外。


是腾讯屏蔽了哄哄模拟器的网页。



屏蔽发生在最活跃的晚上九点,此时最主要的传播链路——QQ和微信被拦腰斩断,大量抱着好奇心的用户被这个页面挡在了外面,流量以极快速度下滑,最终,当天涌入的用户一共是 68 万——如果没有屏蔽,在这个增速下,我想可能会过百万。


结合我自己的账号,Mooonshot,以及伯昊帮我分担的用量,总消耗的 token 达到了十五亿。



我当晚进行了申诉,第二天早上微信给我解封了,但十小时后,又进行了屏蔽——依然是在晚上最活跃的 9 点,在我申诉后又在次日早上解封,然后晚上继续屏蔽,过去几天这样大概重复了三四次,我也不明白为何要这样做——不给我个痛快,但流量在这样的折腾下迅速降低了。



微信生态素以严格著称,哄哄模拟器的流量激增可能触发了某种机制,也可能是某些用户故意引导模型输出出格内容后举报,让屏蔽不断发生,那个熟悉的画面,让我许多不愉快的记忆涌上心头。


但这一次,我其实没有那么不愉快,一方面我投入的并不多,说实话,这只是我做着玩的项目,同时我也知道,目前的哄哄模拟器,就是一个短期很难有商业回报的产品,它成本极高,而收益却极低——如果我不用非常极端的办法去恶心用户的话。


这样的一个产品,前途其实并不明朗。

 

大模型的验证


但这个小产品,我观察到的数据,却给我带来了关于未来的某些希望——用户们很喜欢它,很多用户把我放置的关卡全部通关,还有人在全部通关之后有逐个进行最短回复的挑战,B站,抖音都出现了大量体验,游玩或者吐槽的视频。



值得注意的是,这些用户和我之前做产品所接触的用户完全不同,他们是以大学生,高中生和年轻人组成的,最大比例的年龄区间为16-20岁,我想这可能是一开始我用自己的渠道到处宣传效果并不好的原因,说到底,我已经快 30 岁了,我身边的很多人,也差不多这个年纪,30-40岁的用户,和十几二十岁的用户,感兴趣的点,需求,想法,都有很大不同。


用大模型去做某种更复杂的,更游戏化的聊天体验,能够被人喜欢,至少在年轻人这里,是得到了初步证明的,而之后的问题则是,如何降低成本,如何构建好的商业模式,以及如何拓展到更多的方向上,而对于这些,经此一役,我也有了不一样的感受。

 

其他的想法


我听到了一种声音,可能带了一点情绪,我不确定,这种声音是:做这样不赚钱还亏钱的东西完全是浪费时间。首先我承认并且赞同人应该想办法赚钱过上更好的生活,同时我也认为我们应该保有更多的一些能力,例如感受趣味,它和赚钱不矛盾,但独立于赚钱这件事情。


用最前沿的技术,巧妙的做一个让几十万人用上的产品是很有趣的事情,当他们也因为这个产品而获得了乐趣的时候,我会感觉到我在和世界发生某种奇妙的连接,在某个可承受的范围内,我不计较成本,正是因为这个。


另一方面,我也有某个模糊的感觉,那就是在许多小需求得到满足的时候,就不应该去计较短期的,在承受范围内的成本,尤其是在现在,能够用大模型去实现功能和解决问题,因为这里面可能蕴含着更大的需求,或者能转化成更大的事情,当我们太过谨慎的时候,可能就错失了这种可能性。


话说回来,就算那种可能性最后没有验证,那又有什么关系呢,说到底,人赚钱也好,生活也好,最终不过还是希望能够开心,做哄哄模拟器的这个过程,我就很开心,足矣。


文章来自于微信公众号 “超级王登科”,作者 “DK本人



AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
AI搜索

【开源免费】MindSearch是一个模仿人类思考方式的AI搜索引擎框架,其性能可与 Perplexity和ChatGPT-Web相媲美。

项目地址:https://github.com/InternLM/MindSearch

在线使用:https://mindsearch.openxlab.org.cn/


【开源免费】Morphic是一个由AI驱动的搜索引擎。该项目开源免费,搜索结果包含文本,图片,视频等各种AI搜索所需要的必备功能。相对于其他开源AI搜索项目,测试搜索结果最好。

项目地址:https://github.com/miurla/morphic/tree/main

在线使用:https://www.morphic.sh/