ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
揭秘腾讯混元大模型:400+场景落地,协作SaaS产品全面接入
6071点击    2024-04-26 12:55

进入2024,大模型的风向变了。


当初“百模大战”时,只要简单粗暴拿个Demo搞MaaS(模型即服务),也就是让用户直接和大模型交互就足以上牌桌。


但现在,精耕细作搞应用,无论是原生AI应用,还是在已有产品上整合AI功能,成了最新潮流趋势。


就连一向低调神秘的腾讯混元大模型团队,也对外公布了应用落地进展:


腾讯混元大模型已经支持内部超过400个业务和场景接入,并通过腾讯云,面向企业和个人开发者全面开放。



这里面有很多为人熟知的“国民级”App,如企业微信、腾讯文档、腾讯会议,都已经被AI全副武装。


还有更多腾讯云SaaS产品,如企业知识学习平台腾讯乐享、电子合同管理工具腾讯电子签等,也都有了AI加持。



腾讯混元大模型去年9月才首次亮相,是否有意在加速赶进度?


面对这个问题,腾讯混元大模型应用负责人张锋的回答就有点“凡尔赛”了:


我们只是按照正常的节奏,而且不光是接入大模型这么简单,已经进入打磨用户体验阶段。

在国内大模型厂商中,腾讯为何走出这样一条独特的路线?我们与张锋深入聊了聊。


腾讯AI产品,已经在打磨用户体验了


腾讯这么多年来一直以产品见长,AI时代也延续了这种风格。


就拿大模型的门面腾讯混元助手来说,“已经在打磨用户体验了”还真不是一句空话。


比如让它做一道简单的数学题,就可以发现AI在分析思路时非常流畅,还判断出题目中缺少条件,但最后给出结果前却稍有停顿



这并不符合大模型预测下一个token的运作原理,反倒像是真的在计算。


张锋揭秘,背后其实是AI先写了一段代码,在后端执行再返回结果


不得不说,这是一种解决大模型计算不准确问题的巧妙思路。但为什么不像GPT-4代码解释器版一样,把代码在前台显示出来?


腾讯混元助手一个重要场景是在微信小程序里使用,移动端展示代码就会显得特别长。张锋认为,现在的策略更符合用户体验习惯。


产品策略有了,但实现起来并不是一件简单的事。首先需要大模型明白当前用户需求需要精准计算,接着要生成合适的代码,最后还要成功通过函数调用来执行代码。


像这样从细节出发,打磨用户体验的例子还有很多。


比如大家很熟悉的腾讯会议,比起简单的AI语音转写和会议纪要总结,也做了不少差异化功能。


人的口头表达免不了停顿磕绊,腾讯会议AI在转写时把“嗯嗯啊啊”这样的部分智能规整,让会后文字记录看起来更整洁。


腾讯会议正在思考的另一个问题是,AI 生成的会议总结格式应该根据会议类型做出适当调整。


有明确主题和议程的会议,与大家畅所欲言的头脑风暴会议,需要的总结的格式就截然不同。因此,除了按时间分章节生成会议纪要外,腾讯会议也将推出按发言人/主题生成会议纪要的功能。


腾讯乐享,作为企业知识协作平台,在AI问答功能中就做到了识别提问者身份,做到回答千人千面。


如果是企业HR问AI有关薪酬结构的问题,就可以得到正面回答,其他岗位问同样的问题AI会拒绝提供。做到在便利的同时还非常安全。


湖南的律师事务所旷真接入了乐享助手去做AI知识库, 员工调研显示,对典型问题的AI回答满意度高达93分,端到端问题准确率达91%。


腾讯电子签,利用AI智能文件审查系统,识别合同风险条款,便于企业把控合同风险。企业对合同的风险控制需求各不相同。腾讯电子签还利用大模型和few-shot技术训练适合客户行业的垂类小模型,实现低成本运行。同时,通过混合云的模式,支持数据、模型的私有化部署,解决效率问题的同时保证合规。


总计400+的应用场景中,像这样的例子还比比皆是,这里不再赘述。


值得探讨的下一个问题是,腾讯如何做到在短时间内把AI产品打磨成熟的。


应用落地完整流程已跑通


在腾讯,大模型研发和业务应用是“双向奔赴”的。

根据张锋介绍,腾讯混元大模型研发过程中迭代速度很快,基本一个月就有四到五个版本。


这种速度就来自于和业务应用团队的高效合作,业务团队提出需求并贡献微调数据,研发团队就能有针对性的加强大模型的能力。上线测试过程中不断发现Bad case,也能迅速为大模型补齐短板。


在这种研发时就考虑到实际应用需求的模式下,腾讯混元大模型定位成了“实用级通用大模型”。


在国内大模型中,腾讯混元率先完成MoE(Mix of Experts,专家混合)架构升级,也就是从单个稠密模型升级到多个专家组成的稀疏模型。


MoE架构在激活参数不变情况下,总参数量加大,可以吞吐更多的token,同时,得益于较小的实际激活量,可显著降低训推成本。


这种路线的快速转型,也得益于与早期就了解了业务应用一方需求。


在与业务应用相互打磨的过程中,腾讯混元着重提升了通用模型的三个能力:


指令跟随能力,提出各种各样复杂的结构化长指令,腾讯混元都能按要求执行。



网页及文档理解能力,满足用户经常需要AI来总结长文本内容、减轻认知负的需求。



函数调用能力,也是腾讯混元团队判断大模型下一阶段的趋势之一。



通用大模型只是一个开始。


张锋介绍,在实际应用中,除了MoE主模型,如果调用量很大,从性价比的角度,各业务可以考虑使用不同尺寸的小模型,或者采用根据业务数据微调后的垂直小模型


微调(Fine-Tuning)是学术界通用叫法,在腾讯内部更愿意用“精调”


从数据管理到自研AngelPTM训练框架、AngelHCF推理框架,再到模型评测、部署都有一股精耕细作的劲儿。


那么,面对如今 400+场景,以及未来更多业务都要上大模型的情况,研发团队显然无法分出精力逐个精调,如何解决这个问题呢?


答案是通过混元一站式平台,许多需求业务团队自己就能轻松搞定。


混元一站式平台不仅支持通过API接口直接调用混元大模型服务,还把大模型从训练到部署的很多流程都做到可视化,不用写代码只需鼠标点点就能快速完成。


有了混元一站式平台很多AI工程师都不怎么去折腾代码了,而不精通机器学习的业务工程师也能轻松上手操作。



接下来根据一个完整的模型精调到上线的过程,来了解混元一站式平台的能力。


首先是模型方面,平台提供了各种尺寸的基座模型矩阵。又分为通用模型、针对典型场景的优化模型、针对更垂直领域任务的子模型三个层次。


通用模型前面已经介绍过,场景优化模型可以举两个例子:开发Agent类应用,就可以用到强化了函数调用能力的模型来做;在知识密度高的场景,则可以选择优化摘要能力的模型。


如果不光有垂直的应用场景,还有垂直的数据集,混元一站式平台上就可以完成针对私有数据集的二次训练,让垂直子模型不仅有很好的通用理解能力,也很擅长专业领域的知识也很擅长。


接下来便要说到靠混元一站式平台的数据处理能力。


对于来自不同来源、质量参差的数据,从数据清洗流程如质检、去重,到统计调配不同主题数据的比例,再到更困难的数据价值观对齐,去除其中包含的偏见,都能靠自动化手段高效完成。


即使模型上线之后,再发现由于某类数据缺失造成模型某方面能力不强,也能迅速把补充数据投入到持续训练,支持模型的快速迭代。


有了基座模型和数据,就能通过精调来按需求打造专属模型。无论是速度快成本低的Lora精调,还是全参数深度精调都能在混元一站式平台完成。


精调后模型的评测、部署上线也都做到了自动化,特别是部署可以做到一键发布,是混元一站式平台的核心技术之一。


总结来看,相较于传统的机器学习平台,混元一站式平台的最大特点在于:提供预训练好的基座模型、自动化优化数据处理流程,以及精简高效的模型精调和应用集成工作流。该平台通过自动化和智能工具应对海量训练数据、模型定制和部署等挑战,极大地降低了业务接入大模型的门槛,实现了速度快、效果好、接入方式多样的目标。


一言以蔽之:已跑通从模型研发到应用落地的完整流程。


内部流程彻底跑通、并经过400+场景验证,外部开发者和企业可以通过腾讯云上API直接调用腾讯混元能力,接下来就要在助力合作伙伴业务智能化升级上发力了。


One More Thing


在这次交流的最后,量子位把在测试腾讯混元助手过程中发现的,模型仍无法很好解决的问题提交给了团队。


结束后已经是北京时间晚上6点多,比原定的结束时间推迟了近2个小时。


腾讯混元团队大部分成员都准备动身去往机场,要赶回深圳研发总部。


张锋没有与大家一同离开会议室。


简单告别后,他又一屁股坐回沙发上,一心沉醉到琢磨怎么改进Bad case的世界里了。


—  —


本文来自微信公众号“量子位”


AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
AI工作流

【开源免费】n8n是一个可以自定义工作流的AI项目,它提供了200个工作节点来帮助用户实现工作流的编排。

项目地址:https://github.com/n8n-io/n8n

在线使用:https://n8n.io/(付费)


【开源免费】DB-GPT是一个AI原生数据应用开发框架,它提供开发多模型管理(SMMF)、Text2SQL效果优化、RAG框架以及优化、Multi-Agents框架协作、AWEL(智能体工作流编排)等多种技术能力,让围绕数据库构建大模型应用更简单、更方便。

项目地址:https://github.com/eosphoros-ai/DB-GPT?tab=readme-ov-file



【开源免费】VectorVein是一个不需要任何编程基础,任何人都能用的AI工作流编辑工具。你可以将复杂的工作分解成多个步骤,并通过VectorVein固定并让AI依次完成。VectorVein是字节coze的平替产品。

项目地址:https://github.com/AndersonBY/vector-vein?tab=readme-ov-file

在线使用:https://vectorvein.ai/(付费)

2
智能体

【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。

项目地址:https://github.com/Significant-Gravitas/AutoGPT


【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。

项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md

3
知识库

【开源免费】FASTGPT是基于LLM的知识库开源项目,提供开箱即用的数据处理、模型调用等能力。整体功能和“Dify”“RAGFlow”项目类似。很多接入微信,飞书的AI项目都基于该项目二次开发。

项目地址:https://github.com/labring/FastGPT

4
微调

【开源免费】XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。它帮助开发者提供一个简单易用的平台,可以对大语言模型(LLM)和多模态图文模型(VLM)进行预训练和轻量级微调。XTuner 支持多种微调算法,如 QLoRA、LoRA 和全量参数微调。

项目地址:https://github.com/InternLM/xtuner