ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
上海AI春晚,大佬们都说了啥?
5164点击    2024-07-05 10:14


上海近40度的高温,并没有阻止人们参会的热情——相反,7月4日于上海举办的2024年世界人工智能大会暨人工智能全球治理高级别会议,比去年更为火爆了。


上午的会场短暂对外关闭了一段时间,但正式开放后,在笔者参加的几个论坛现场,几乎都座无虚席、不少观众都站着听演讲。


“就是一个火爆。”一位现场工作人员说。据极客公园了解,仅今天一天,此次大会的曝光量就有超过去年总和的趋势。


大会第一天,19场论坛、数百位AI圈最瞩目的学术界、产业界代表展开了密集的讨论。可无论是图灵奖得主、科技公司一把手、还是展台前被AI裹挟的普通人,又都在说同一件事——AI应用如何落地。


这里没有“大模型颠覆世界”的夸夸其谈,也没有“AI应用落地不及预期”的断言,聊的都是:当下、今天,如何摘取大模型的果实。就着大模型“木桶效应”的最短板,怎么做出今天能用得上、用得好的AI应用。Transformer和Scaling Law未必通向AGI,但一个LUI(自然语言交互)的新世界已经在日常生活的方方面面徐徐展开。


大会的议程设置往往反映了行业的普遍趋势。除了大模型之外,具身智能、机器人、芯片等领域也延续了去年大会的热度——但有所不同的是,据极客公园了解,如果说去年自动驾驶并不是大会焦点,那么今年这个领域又重新回到视野中央。而这离不开特斯拉FSD V12带火的自动驾驶新技术范式。


论坛上,多位AI行业大咖都表达了自己的思考,从中可以一窥行业目前的大趋势。极客公园整理了其中的精华观点,Enjoy:


周伯文(上海人工智能实验室主任、衔远科技创始人)


对AI安全的投入远落后于AI性能的投入


目前,从算法研究、人才密集度、商业驱动力甚至包括算力的投入等方面来看,我们对AI安全的投入远远落后于对AI性能的投入。现在,世界上只有1%的(资源)投入在对齐或者安全考量上。


姚期智(图灵奖得主、中国科学院院士、清华大学交叉信息研究院院长)


控制好AI,但又不能破坏它


AI风险来自于三个方面:一是网络风险延伸和扩大。现在,我们觉得管理数据安全已经是很困难的,出现了AI会困难100倍。二是没有意识到的社会风险,比如说AI非常强大,而且是可以有很多方式去使用的,所以在短时间内颠覆现在的社会结构的可能性,这是存在的。比如说有人提到,AI可能带来大规模的失业。三是最有意思的层面,生存或者存在的风险。以前也面临过,当火车或者蒸汽机发明的时候,就有人有这样的担忧。


作为计算机科学家看到了最有深度的问题,一方面我们把AI控制好,毕竟这是我们设计出来的;另外一方面,也不希望它被我们给破坏了,这样权衡是非常困难的。正如图灵所说,这是无法预测的,预测不了机器有了足够算力之后会做什么。


李彦宏(百度创始人、董事长兼首席执行官)


我们要避免掉入“超级应用陷阱”


一定要出现一个DAU 10亿的应用才叫成功,这是移动时代的思维逻辑。其实不一定,AI时代,“超级能干”的应用比只看DAU的“超级应用”恐怕要更重要,只要对产业、应用场景能产生大的增益,整体价值就比移动互联网要大多了。


智能体是最被看好的AI应用方向,搜索是智能体分发的最大入口


热衷于“用AI写一个作文能得多少分”,其实这个使用价值是不大的,人家不会让你带一个大模型去参加高考。但是真正的需求是,大量的考生在考完之后要报志愿、要选择学校、选择专业,他们对一所大学、一个专业,会有各种各样的问题,而每一个考生的情况又是不一样的,这时候就需要有一个智能体来回答每一个考生专有的问题。


制作一个好的智能体通常并不需要编码,只要用人话把智能体的工作流说清楚,再配上专有的知识库,一般就是一个很有价值的智能体,这比互联网时代制作一个网页还要简单。


未来,将会形成庞大的智能体生态,而搜索是智能体分发的最大入口。


开源模型在特定场景有价值,但并不适用于大多数应用场景


开源大模型在学术研究、教学领域等特定场景下有存在的价值,但并不适用于大多数应用场景。在激烈竞争的环境中,需要让业务效率比同行更高、成本比同行更低时,商业化的闭源模型是最能打的


(业界可能会)混淆模型开源和代码开源这两个概念。模型开源,你拿到的是一大堆参数,还是要去做SFT,还是要去做安全对齐。你不知道这些参数是怎么来的,是无法做到众人拾柴火焰高的,即使拿到对应的源代码,也不知道他用了多少数据、用了什么比例的数据去训练这些参数。所以拿到这些东西,并不能够让你站在巨人的肩膀上去迭代和开发。


傅盛(猎豹移动董事长兼CEO,猎户星空董事长)


智能涌现,是一个灰盒状态


今天我们讲的生成式人工智能,是不是人工智能核心的道路?按照这条道路走,是不是能够创造通用人工智能?还是说也会有别的路线?


今天业界、学术界有不同的看法,认为仿人类的智能、仿人类的框架才能真正发现智慧的过程。因为今天的生成式人工智能,我们叫智能涌现,其实对中间的原理并不是特别清楚,是一个灰盒状态。


智能的涌现,可能是多条路线的。对于我们创业者来说,今天看到了这一波人工智能带来的巨大的生产力变革,就应该要坚定地投入。在人工智能技术的构建上,去完成一系列产业变革。


安德雷斯·韦思岸(社交数据实验室创始人、亚马逊前首席科学家)


人和AI不一样的地方在于:好奇心和审美


到底推动人们发展的是什么?我们和AI不一样的地方在哪里呢?我有一个想法,那就是好奇心。


我还想再加一句,上周世界上最好的交响乐团——爱乐乐团来到了上海进行表演,他们演奏的音乐会特别棒。这个时候已经不是好奇心让人类疗愈人类了,而是欣赏、审美、热爱。


王坚(中国工程院院士、之江实验室主任、阿里云创始人)


GPT的潜力还没有被完整地探索


80年代初,发明了人工智能这个词的十个人之一—— 赫伯特·西蒙(Herbert A.Simon)跟我们讲,人工智能是未来。你想一个大学生被讲了以后,可以想象是多么热血。但等了几十年,(人工智能)也没有来。所以很多问题的探讨,困难要超出我们的想象。


但这一次可以说,人工智能是有别于过去的人工智能。不好说它是不是通用人工智能,但是它一定跟过去五六十年是不一样的。


General Intelligence被翻译成通用人工智能,我个人觉得有一点点混淆,翻译成普通人工智能会更加确切,它是一个最最基本的东西,而不是从通用不通用的这个角度来讲。


人工智能的机会属于谁?


(考虑到大模型所需要的算力、算法、数据门槛)人工智能对大公司会友好一点,但是友好并不意味着宽容,一定会有新的大公司出现,也一定会有大公司欲火重生。大企业(可能)会觉得AI是工具的革命,小企业一定会觉得这是革命的工具。我想大企业也要意识到这是革命的工具,那这个变化就来了。


张平安(华为常务董事、华为云CEO)


AI创新,离不开“在云端释放算力需求”的创新


中国的AI发展,离不开算力基础设施创新。这条AI创新道路,包括把端侧硬件AI算力的需求,释放到云端。


在云端,通过云网端芯架构上的协同创新,来构建可持续发展的AI算力基础,包括芯端算力上云、面向AI的网络架构升级、云基础设施系统架构创新三个方面。


井贤栋(蚂蚁集团董事长兼CEO)


大模型落地三大难


业界普遍认为,通用大模型落地产业,面临着三个“能力短板”:领域知识相对缺乏、复杂决策难以胜任,以及对话交互不等于有效协同。


AI服务的代际升级


为了破解这些难题,专业智能体是通用大模型落地产业的有效路径。通过专业智能体的深度连接,Al会像互联网一样,带来服务的代际升级。(在移动互联网时代APP小程序是服务载体,未来是要往专业智能体方向推进。)


未来智能化的用户体验,一定不是只靠一个大模型,而是需要全行业深度协作,需要很多的专业智能体共同参与、各司其职。


徐立(商汤科技董事长兼CEO)


应用是AI“超级时刻”的关键


我的观点是虽然我们的行业非常热,包括像GPT带来的聊天式的应用,Sora带来的视频应用,但它还没有到“超级时刻”,是因为它没有真正走进到一个行业垂直应用当中、引起广泛的变化。


可是这两天,我忽然感觉有点变化。因为我的中学退休老师不停在群里面问我,怎么样用人工智能去写文案、生成祝福的图片,发到他的退休群里等等。


我突然想,其实超级时刻和应用是互相成就的。只有超级时刻带来的认知的变化,最后才能推动应用。倒推回来,如果我们有应用作支撑,那么我们现在这个时刻就是“超级时刻”。所以,应用是“超级时刻”的关键。


走向广泛应用的三大突破点:高质量数据、流畅的交互、可控性


如果要推动人工智能超级时刻的到来,需要大模型可以展现出卓越的深度思考的能力。那么合成的人工数据,特别是高级思维的数据非常重要。所以越是有应用的场景,才能形成更好的、高质量的数据。


第二,自然的、没有延迟的交互。端侧其实也是一个非常重要的突破点,推动模型的端侧优化,实时的交互变化会更加流畅。用好端和云两部分的计算机资源,才能够成为一种全自然的交互模式。


第三,所有的生成都要可控,你不需要做得很好,但你需要知道你哪里做得不好,并且在哪里进行一些修改,有了这样的一个边界,那么实际上才能做到真正的可控技术以及可持续的技术发展。


孟樸(高通公司中国区董事长)


终端与云端的紧密结合,将成为推动生成式AI规模化扩展、加速数字化转型的关键


虽然当前生成式AI的研发和应用主要集中在云端,并且云计算仍将发挥重要作用,但如果将20%的生成式AI工作负载转移到终端侧,预计到2028年将节省160亿美元的计算资源成本。


这种终端与云端的紧密结合,将成为推动生成式AI规模化扩展、加速数字化转型的关键所在。同时,为了推动生成式AI的广泛应用,我们也需要将其能力延伸到日常使用的智能设备上,如智能手机、移动PC和智能网联汽车等。


实现生成式AI在终端上的落地,需要在终端侧打造高性能AI处理器,还需要对生成式AI模型进行训练优化,使其体量越来越小,效率越来越高。


IDC预测,预计2027年中国新一代AI手机出货量将达到1.5亿台,市场份额将超过50%。在PC方面,咨询公司预计AI PC的渗透率将从2024年的2%上升到2028年的65%。


闫俊杰(MiniMax创始人兼CEO)


应用的关键是,要降低模型错误率


我觉得目前大模型最核心的问题是,错误率还是比较高的。比如GPT4在很多测试指标上,正确率只有60%、70%,也就是有30%、40%的错误率。国内的模型整体有60%到70%的错误率。


为什么大模型的产品都是一个对话的形式?因为对话的容错率比较高。为什么它不能成为一个独立的Agent?如果是个Agent,需要进行多步交互、错误率就更高,就没有办法用。


所以我觉得最核心的问题是,怎么把大模型的错误率从30%、40%,降到3%、4%或者2%。AI从一个辅助人类的工具到能独立完成工作的最核心标志,就是错误率整体的降低。这对于更大的社会价值是至关重要的。


提升模型正确率的关键路径


比如为什么我们要做合成数据?比如为什么我们在不停地提高训练的效率?比如我们为什么要研究新型的、比Transformer更好的网络结构?比如说我们为什么要研究各种各样的算法?比如说为什么要做更好的对齐……所有这些事都是围绕着怎么把这些技术加在一起或者乘在一起,能够让我们半年或一年之后,有一个错误率个位数的模型。


大模型降价是一件好事


我觉得大模型的价格持续走低,整体来说,是一个非常正向的事。因为它本来就应该降低。同时它降低的同时,效果就应该更好。


但是对于大模型企业来说,价格降低的好处是你可以有更多的用户、有更多在线的用户使用时长、有更多的流量,产生更大的价值,更多是基于这种流量价值来找到一种好的商业模式。


张鹏(智谱AI首席执行官)


大模型的核心突破是多模态


我们现在有一个很重要的点是去突破大模型的多模态。为什么要多模态?因为真正的人在现实世界中解决问题的时候,需要的、输入的信息本身就是多模态的。


除了自然语言以外,还有视觉、听觉、触觉,还有常识,所有这些需要综合起来,才能解决现实世界中很多常见的问题。


大模型降价不能长久


价格的下降是因为技术驱动,因为本身技术越来越好,成本越来越低、价格持续走低。但是这个事情过度就不好,真正的价值应该是逐级去呈现的。


我们给大家提供更优质的服务,大家能够用这个服务创造更大的价值,然后我们创造这一部分价值应该反向再传递回来,大家各自得到自己价值的部分,这是一个正常合理的市场价值链。从这个角度来说,降价这种事是不长久的。


应用落地,顺着大模型最本质的变化——认知能力和泛化能力


过去一些AI的方法,比如说人脸识别,它已经可以在指标级上超过人类的水平了,为什么大家觉得这不是我们AI的终极答案呢?


比如说感知时代的AI,能够产生实际的效能,但是它是受限的,泛用性不够、成本太高、需要垂直化去做很多事情、ROI算不平。


而大模型带来了全新的能力,我们称它为“类人”的认知能力,让机器能够像人一样去思考。并不是让机器成为一个机器、一个工具,而是让机器像人一样去思考,思考这个能力所带来的效能提升是更重要的。


今天我们希望通过“让机器思考”演进的方向去赋能实体经济,大模型能够提供泛用化的能力,解决一系列的场景和应用需求,从而来解决成本和收益平衡的问题,这是它本质的特点。


所以一定要从这个方向去思考,我们怎么去用新一代生成式AI和大模型的技术赋能实体经济。要构建更通用、更基础的一个能力,去解决多项的问题。这个过程中,模型本身的能力水平是最核心的。


本文来自微信公众号:极客公园 (ID:geekpark),作者:宛辰、诗韵


关键词: AI , AI春晚 , WAIC , 人工智能
AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
AI工作流

【开源免费】n8n是一个可以自定义工作流的AI项目,它提供了200个工作节点来帮助用户实现工作流的编排。

项目地址:https://github.com/n8n-io/n8n

在线使用:https://n8n.io/(付费)


【开源免费】DB-GPT是一个AI原生数据应用开发框架,它提供开发多模型管理(SMMF)、Text2SQL效果优化、RAG框架以及优化、Multi-Agents框架协作、AWEL(智能体工作流编排)等多种技术能力,让围绕数据库构建大模型应用更简单、更方便。

项目地址:https://github.com/eosphoros-ai/DB-GPT?tab=readme-ov-file



【开源免费】VectorVein是一个不需要任何编程基础,任何人都能用的AI工作流编辑工具。你可以将复杂的工作分解成多个步骤,并通过VectorVein固定并让AI依次完成。VectorVein是字节coze的平替产品。

项目地址:https://github.com/AndersonBY/vector-vein?tab=readme-ov-file

在线使用:https://vectorvein.ai/(付费)

2
智能体

【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。

项目地址:https://github.com/Significant-Gravitas/AutoGPT


【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。

项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md

3
知识库

【开源免费】FASTGPT是基于LLM的知识库开源项目,提供开箱即用的数据处理、模型调用等能力。整体功能和“Dify”“RAGFlow”项目类似。很多接入微信,飞书的AI项目都基于该项目二次开发。

项目地址:https://github.com/labring/FastGPT