一天开发一个 App,听起来像是个天方夜谭吧?说实话,几年前我也觉得不可能,但在今天,借助强大的 AI 工具和合理的工作流,这事儿真的变得触手可及。当然,这并不意味着可以随便敷衍,而是需要一套高效的方法论。今天,我就来分享一下我们团队在一天内开发一个 App 的完整流程。
别看开发很“卷”,但其实最花时间的不是写代码,而是理清需求。在这篇文章里,我假设需求已经明确,甚至你自己就是产品经理,脑子里已经有个大致想法,这样可以省去不少反复沟通的麻烦。
一天搞定一个 App,离不开合理的拆解流程。我们的核心步骤是:
每一步都可以依赖 AI 工具,让事情变得简单高效。接下来我会逐步拆解,看看这些工具到底能帮我们干什么。
用什么工具?MasterGo!
MasterGo
交互设计听起来复杂,但对于普通需求来说,没必要太“卷”。我们团队习惯用 MasterGo[1],上手简单,重点是它自带“智能排版”。
假设你要开发一款写作辅助工具,你只需要告诉 MasterGo 你想要哪些功能,比如“灵感收集”“实时纠错”“快速生成段落”。它会根据功能点自动生成一份大致的交互稿,你无需考虑细节布局。
比如,这样一份视觉稿就是 AI 帮我生成的:
视觉稿示例
时间成本?
这一部分搞定,大概也就花 30 分钟。如果需求不复杂,甚至可能更快。
API 是应用的骨架,设计合理与否直接决定后续开发的效率。这里的核心工具是 我们沉淀的工作流,工作流中,我们会把需求文档作为输入,最终产出api 文档
,测试用例
,api 代码实现
,其中的部分细节包括。
1. Claude 帮你定义 API 和数据模型
告诉 Claude 你的功能需求,它会帮你自动生成 API 文档和对应的数据模型。例如,你的写作工具需要“存储文章”“获取灵感推荐”“实时统计字数”,Claude 会给出这样的 API 设计:
{
"endpoints": [
{
"method": "POST",
"path": "/articles",
"description": "创建新文章",
"requestBody": {
"title": "string",
"content": "string"
}
},
{
"method": "GET",
"path": "/articles/{id}",
"description": "获取文章详情"
}
]
}
2. 用 Prisma 自动生成数据库表
Prisma 可以省去写 SQL 的麻烦,你只需要定义数据模型,数据库表就“嗖”地生成好了。而且它支持从 SQLite 无缝切换到 MySQL 或 PostgreSQL,开发环境和生产环境切换也很方便。
model Article {
id Int @id @default(autoincrement())
title String
content String
createdAt DateTime @default(now())
}
3. API 实现也交给 AI
测试用例写好后,让 AI 按照这些用例生成实现代码。比如,一个简单的增删改查接口,AI 基本能一遍过,实在有 bug,也可以根据错误提示自动修复。
时间成本?
10 个以下的 API,1 小时内绝对能搞定。复杂些的需求,2 小时封顶。
我们的经验:后端,这种纯粹逻辑的东西,一堆增删改查,一堆逻辑,完全就可以直接交给 AI。 你参与过多都是一种对 AI 工具的不尊重。
选择技术栈
前端实现稍微复杂一点,但我们用的是“基于 AI 的模块化开发”。技术栈选什么?团队一直用 React,具体到 App 开发,我们更倾向于 Expo,简单高效,还能兼容多端(iOS/Android)。
工具上场:Cursor
Cursor 是我们团队目前的必备工具啦,尤其擅长根据交互稿和需求文档生成代码。比如,使用我们团队沉淀的一套 prompts,我用它生成了 App 的初始代码框架,还划分好了模块:
Cursor生成的代码框架
看看效果:
Cursor 基于视觉搞生成的初始框架运行效果
哈哈,缺了点东西,但是基本的架子已经给我们整好了,而且目录文件都创建好,接下来按图索骥,填充各个模块就好了。
OK,接下来就可以一模块一模块开发了。
每个模块的开发过程基本是这样:
同样的道理,我们为模块化开发的方式,沉淀了一套 prompts,它们可以很好的应对不同类型的功能特点的需求。甚至,在适应不同的端上也做了微调,整体来讲,在 gpt-4o 和 Claude 模型测试上来看,效果非常不错,人工干预的机会成本比较少。
时间成本?
每个模块大概半小时到一小时,复杂些的最多两小时。如果有 8 个模块,5 小时应该能搞定大部分。
后端部署没有太多花样,Docker 一键部署绝对是最优解。写好 docker-compose.yml
文件,把服务打包好,上传到服务器,完事儿。甚至,我们做了 hooks,代码一推送就自动部署了,你说快哉不快哉。
Expo 的打包流程也很简单,重点是提前执行 npx expo prebuild
,这样可以生成原生目录,方便后续扩展原生能力。还可以通过配置 build.gradle
文件减少包的体积。
splits {
abi {
enable true
reset()
include "armeabi-v7a", "arm64-v8a"
}
}
时间成本?
部署过程大概 1 小时,主要时间在调试和环境配置上。
经过 8 小时的高效开发,我们的 App 已经基本完成:从交互到功能实现,再到上线打包。虽然可能还需要一些小的优化,但至少已经可以投入测试甚至初步上线。基于这套工作流,我们已经成功帮助多家传统企业实现了一些小规模数据化产品,再此,也真诚欢迎各位老板、及朋友们来找我们团队聊聊 AI 开发。
一些感悟
为什么一天能搞定一个 App?答案很简单——得益于工具和合理的工作流。AI 工具释放了我们的生产力,让开发者能专注在更重要的逻辑和体验上。未来,或许一天开发一个 App 会成为一种新常态,你怎么看呢?
[1]
MasterGo: https://mastergo.com
文章来自于“老码小张”,作者“老码小张”。
【开源免费】n8n是一个可以自定义工作流的AI项目,它提供了200个工作节点来帮助用户实现工作流的编排。
项目地址:https://github.com/n8n-io/n8n
在线使用:https://n8n.io/(付费)
【开源免费】DB-GPT是一个AI原生数据应用开发框架,它提供开发多模型管理(SMMF)、Text2SQL效果优化、RAG框架以及优化、Multi-Agents框架协作、AWEL(智能体工作流编排)等多种技术能力,让围绕数据库构建大模型应用更简单、更方便。
项目地址:https://github.com/eosphoros-ai/DB-GPT?tab=readme-ov-file
【开源免费】VectorVein是一个不需要任何编程基础,任何人都能用的AI工作流编辑工具。你可以将复杂的工作分解成多个步骤,并通过VectorVein固定并让AI依次完成。VectorVein是字节coze的平替产品。
项目地址:https://github.com/AndersonBY/vector-vein?tab=readme-ov-file
在线使用:https://vectorvein.ai/(付费)
【开源免费】XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。它帮助开发者提供一个简单易用的平台,可以对大语言模型(LLM)和多模态图文模型(VLM)进行预训练和轻量级微调。XTuner 支持多种微调算法,如 QLoRA、LoRA 和全量参数微调。
项目地址:https://github.com/InternLM/xtuner
【开源免费】LangGPT 是一个通过结构化和模板化的方法,编写高质量的AI提示词的开源项目。它可以让任何非专业的用户轻松创建高水平的提示词,进而高质量的帮助用户通过AI解决问题。
项目地址:https://github.com/langgptai/LangGPT/blob/main/README_zh.md
在线使用:https://kimi.moonshot.cn/kimiplus/conpg00t7lagbbsfqkq0