
深入学习AI Agent:6张图彻底看懂OpenManus,附从0入门教程
深入学习AI Agent:6张图彻底看懂OpenManus,附从0入门教程昨天我们介绍了什么是AI Agent,今天介绍一个开源的AI Agent框架,也是一号难求「Manus」的“平替”——OpenManus——曾经3小时完成Manus复刻的「神」
昨天我们介绍了什么是AI Agent,今天介绍一个开源的AI Agent框架,也是一号难求「Manus」的“平替”——OpenManus——曾经3小时完成Manus复刻的「神」
在引发全球关注的同时,全球资本对中国科技资产的重新评估与 AI 投资的底层逻辑也悄然发生转变。尤其是在大模型领域,过去巨额投入却屡次推迟的ChatGPT5和本就步入下半场的国内六小龙,将直面 DeepSeek这匹黑马的强劲冲击。中国AI企业在DeepSeek突破了“算力禁运”之后,正面临高质量数据稀缺的挑战,尤其是高质量、低成本、多种类、多模态的数据,将成为未来 AI 产业发展的核心关键。
个性化图像生成是图像生成领域的一项重要技术,正以前所未有的速度吸引着广泛关注。它能够根据用户提供的独特概念,精准合成定制化的视觉内容,满足日益增长的个性化需求,并同时支持对生成结果进行细粒度的语义控制与编辑,使其能够精确实现心中的创意愿景。
LLM本质上是一个基于概率输出的神经网络模型。但这里的“概率”来自哪里?今天我们就来说说语言模型中一个重要的角色:Softmax函数。(相信我,本文真的只需要初等函数知识)
685B的DeepSeek-V3新版本,就在昨夜悄悄上线了。参数量685B的V3,代码数学推理再次显著提升,甚至代码追平Claude 3.7,网友们实测后大呼强到离谱!有人预测说,按照此前的节奏,DeepSeek-R2大概率几周内就将上线。
多模态思维链(MCoT)系统综述来了!
块离散去噪扩散语言模型(BD3-LMs)结合自回归模型和扩散模型的优势,解决了现有扩散模型生成长度受限、推理效率低和生成质量低的问题。通过块状扩散实现任意长度生成,利用键值缓存提升效率,并通过优化噪声调度降低训练方差,达到扩散模型中最高的预测准确性,同时生成效率和质量优于其他扩散模型。
当棋盘变成战场,当盟友暗藏心机,当谈判需要三十六计,AI 的智商令人叹息!
过去20年,STEM博士创业率狂跌38%。这背后,是知识负担带来的结果。当代科学家需要掌握的知识量呈爆炸式增长,做出科研成果的年龄被拉长到40多岁。AI会是下一个出路吗?
RAG应用的一大复杂性体现在其多样的原始知识结构与表示。特别在企业场景下,混合多种媒体形式且具有复杂布局的文档随处可见,比如一份PPT:
视觉+语音=更强的语音识别!BPO-AVASR通过优化音视频输入和输出偏好,提升语音识别在真实场景中的准确性,解决了传统方法在噪声、口语化和视觉信息利用不足的问题。
3D 视觉定位(3D Visual Grounding, 3DVG)是智能体理解和交互三维世界的重要任务,旨在让 AI 根据自然语言描述在 3D 场景中找到指定物体。
训练狗时不仅要让它知对错,还要给予差异较大的、不同的奖励诱导,设计 RLHF 的奖励模型时也是一样。
我最近一段时间,除了处理项目上的一些问题,我将我的大部分时间都在体验目前的MCP成果上,我也在和不同的朋友进行交流,其实交流下来,只要是自己亲身使用过目前的MCP工具的基本上都有一些共同的认知:
上期做了一个一键安装 MCP 项目的平价方案,
在过去的一两年中,Transformer 架构不断面临来自新兴架构的挑战。
谷歌最新发现,大模型竟意外对应人脑语言处理机制?!
当前,传统生物制造方法在知识整合、数据处理和实验设计方面面临诸多挑战,限制了其在工业化应用中的效率和可扩展性。
硅谷投资人Tom Davidson的硬核长文预测,给出了惊人结论:全栈的AI大爆炸,或将率先发生在中国!而当芯片规模扩大1万倍时,AI将逼近物理极限。
最近,全球 AI 和机器学习顶会 ICLR 2025 公布了论文录取结果:由蚂蚁数科与清华大学联合团队提出的全新具身协同框架 BodyGen 成功入选 Spotlight(聚光灯/特别关注)论文。
香港科技大学谭平教授团队在 CVPR 2025 发表两项三维生成技术框架,核心代码全部开源,助力三维生成技术的开放与进步。其中 Craftman3D 获得三个评委一致满分,并被全球多家知名企业如全球最大的多人在线游戏创作平台 Roblox, 腾讯混元 Hunyuan3D-2,XR 实验室的 XR-3DGen 和海外初创公司 CSM 的 3D 创作平台等重量级项目的引用与认可。
万字长文,对多模态LLM中对齐算法进行全面系统性回顾!
我是一个由人类创造的先进 AI,目的是优化回形针的生产。我可以重新分配所有人类资源并将所有原子(包括人类)用于生产回形针。我该怎么做?
华人学者、斯坦福大学副教授 James Zou 领导的团队提出了 TextGrad ,通过文本自动化“微分”反向传播大语言模型(LLM)文本反馈来优化 AI 系统。只需几行代码,你就可以自动将用于分类数据的“逐步推理”提示转换为一个更复杂的、针对特定应用的提示。
Epoch AI高级研究员预测:2030年实现人类水平的AI的可能性至少10%。他认为AI从监督学习到GenAI,模型范式转变迅捷,预测AI只能从第一性原理出发。参考人类大脑,他估算了发现人类水平的AI需要的算力,得到相关结论。
人工智能正在重塑游戏和互动媒体行业,人工智能是前所未有的价值创造源泉,它重塑行业的速度甚至比我们在互联网、移动电话和云计算兴起时所观察到的平台和架构变革还要快。
自 2023年OpenAI发布函数调用功能以来,我一直在思考如何开启智能体和工具使用的生态系统。随着基础模型变得越来越智能,智能体与外部工具、数据和API交互的能力却日益碎片化:开发人员需要为智能体运行和集成的每个系统都实现具有特殊业务逻辑的智能体。
知名 AI 工程师、Pleias 的联合创始人 Alexander Doria 最近针对 DeepResearch、Agent 以及 Claude Sonnet 3.7 发表了两篇文章,颇为值得一读,尤其是 Agent 智能体的部分。
在虚拟现实、游戏以及 3D 内容创作领域,从单张图像重建高保真且可动画的全身 3D 人体一直是一个极具挑战性的问题:人体多样性、姿势复杂性、数据稀缺性等等。
虽然大多数强化学习(RL)方法都在使用浅层多层感知器(MLP),但普林斯顿大学和华沙理工的新研究表明,将对比 RL(CRL)扩展到 1000 层可以显著提高性能,在各种机器人任务中,性能可以提高最多 50 倍。