
清华开源混合精度推理系统MixQ,实现大模型近无损量化并提升推理吞吐
清华开源混合精度推理系统MixQ,实现大模型近无损量化并提升推理吞吐一键部署LLM混合精度推理,端到端吞吐比AWQ最大提升6倍! 清华大学计算机系PACMAN实验室发布开源混合精度推理系统——MixQ。 MixQ支持8比特和4比特混合精度推理,可实现近无损的量化部署并提升推理的吞吐。
一键部署LLM混合精度推理,端到端吞吐比AWQ最大提升6倍! 清华大学计算机系PACMAN实验室发布开源混合精度推理系统——MixQ。 MixQ支持8比特和4比特混合精度推理,可实现近无损的量化部署并提升推理的吞吐。
2024 年 7 月,清华大学计算机系 PACMAN 实验室发布开源深度学习编译器 MagPy,可一键编译用户使用 Python 编写的深度学习程序,实现模型的自动加速。
三维重建是计算机图形学的经典任务,具有很强的使用价值。近年来,诸如神经辐射场的隐式场方法 [1][2][3][4] 正成为重建任务广泛采用的表示。
该论文作者均来自于华南理工大学马千里教授团队,所在实验室为机器学习与数据挖掘实验室。论文的三位共同第一作者为博士生郑俊豪、硕士生邱圣洁、硕士生施成明,主要研究方向包括大模型和终生学习等,通讯作者为马千里教授(IEEE/ACM TASLP 副主编)。
该论文作者来自复旦大学、中电金信及上海智能视觉计算协同创新中心团队,论文已被多媒体领域顶级国际会议 ACM MultiMedia 2024 接收,并将在该大会上进行口头报告(Oral 接收率仅 3.97%)。
ACM SIGKDD(国际数据挖掘与知识发现大会,KDD) 会议始于 1989 年,是数据挖掘领域历史最悠久、规模最大的国际顶级学术会议,也是首个引入大数据、数据科学、预测分析、众包等概念的会议。
来自复旦大学视觉与学习实验室的研究者们提出了一种新型的面向视频模型的对抗攻击方法 - 基于扩散模型的视频非限制迁移攻击(ReToMe-VA)。该方法采用逐时间步对抗隐变量优化策略,以实现生成对抗样本的空间不可感知性;同时,在生成对抗帧的去噪过程中引入了递归 token 合并策略,通过匹配及合并视频帧之间的自注意力 token,显著提升了对抗视频的迁移性和时序一致性。
MICRO 全称 IEEE/ACM International Symposium on Microarchitecture,与 ISCA、HPCA、ASPLOS 并称为体系结构「四大顶会」,囊括了当年最先进的体系结构成果,被视作国际前沿体系结构研究的风向标,见证了诸多突破性成果的首次亮相,包括谷歌、英特尔、英伟达等企业在半导体领域的多项技术创新。
多模态对比学习(如CLIP)通过从互联网上抓取的数百万个图像-字幕对中学习,在零样本分类方面取得了显著进展。 然而,这种依赖带来了隐私风险,因为黑客可能会未经授权地利用图像-文本数据进行模型训练,其中可能包括个人和隐私敏感信息。
如何判断一个AI模型是否属于开源阵营?开源or闭源,到底哪种系统才更安全?最近,两位荷兰学者发表的一篇ACM FAccT论文给出了富有卓见的回答。