
生图加入CoT,性能提升80%!微软港中文打造天才画手
生图加入CoT,性能提升80%!微软港中文打造天才画手AI绘画总「翻车」,不是抓不住重点,就是细节崩坏?别愁!微软和港中文学者带来ImageGen-CoT技术,让AI像人一样思考推理,生成超惊艳画作,性能提升高达80%。
AI绘画总「翻车」,不是抓不住重点,就是细节崩坏?别愁!微软和港中文学者带来ImageGen-CoT技术,让AI像人一样思考推理,生成超惊艳画作,性能提升高达80%。
是的,Rabbit,那个一度声名鹊起的第一代 AI 硬件公司,下场做 AI Agent 了。
在信息检索系统中,搜索引擎的能力只是影响结果的一个方面,真正的瓶颈往往在于:用户的原始 query 本身不够好。
Q-Insight不再简单地让模型拟合人眼打分,而是将评分视作一种引导信号,促使模型深度思考图像质量的本质原因。有了会思考的“大脑”,视频云技术栈不仅得以重塑也让用户体验有了跃迁。
路由LLM是指一种通过router动态分配请求到若干候选LLM的机制。论文提出且开源了针对router设计的全面RouterEval基准,通过整合8500+个LLM在12个主流Benchmark上的2亿条性能记录。将大模型路由问题转化为标准的分类任务,使研究者可在单卡甚至笔记本电脑上开展前沿研究。
图文大模型通常采用「预训练 + 监督微调」的两阶段范式进行训练,以强化其指令跟随能力。受语言领域的启发,多模态偏好优化技术凭借其在数据效率和性能增益方面的优势,被广泛用于对齐人类偏好。目前,该技术主要依赖高质量的偏好数据标注和精准的奖励模型训练来提升模型表现。然而,这一方法不仅资源消耗巨大,训练过程仍然极具挑战。
我之前拉了一个AI自媒体的群,就...同行交流,互相学习。
今日凌晨,Meta AI 部门副总裁 Ahmad Al-Dahle 发文,回应了近日发布的 Llama 4 大模型的争议问题:对于「不同服务中模型质量参差不齐」这一问题,Ahmad Al-Dahle 解释称,由于模型一准备好就发布了,所以 Meta 的团队预计所有公开的应用实现都需要几天时间来进行优化调整,团队后续会继续进行漏洞修复工作。
随着AI能力的迭代升级,可以发现一个明显的趋势,AI已经从最初理解人类进行智能对话,逐渐演变成一种情感治愈工具。而这种工具的体现形式不仅仅限于正值火热的AI萌宠硬件、AI社交软件,还有一些小众的细分应用,比如AI解梦。
Agentic AI 的 3 要素是:tool use,memory 和 context,围绕这三个场景会出现 agent-native Infra 的机会。