
挖掘DiT的位置解耦特性,Personalize Anything免训练实现个性化图像生成
挖掘DiT的位置解耦特性,Personalize Anything免训练实现个性化图像生成个性化图像生成是图像生成领域的一项重要技术,正以前所未有的速度吸引着广泛关注。它能够根据用户提供的独特概念,精准合成定制化的视觉内容,满足日益增长的个性化需求,并同时支持对生成结果进行细粒度的语义控制与编辑,使其能够精确实现心中的创意愿景。
个性化图像生成是图像生成领域的一项重要技术,正以前所未有的速度吸引着广泛关注。它能够根据用户提供的独特概念,精准合成定制化的视觉内容,满足日益增长的个性化需求,并同时支持对生成结果进行细粒度的语义控制与编辑,使其能够精确实现心中的创意愿景。
在 ICLR 2025 中,来自南洋理工大学 S-Lab、上海 AI Lab、北京大学以及香港大学的研究者提出的基于 Flow Matching 技术的全新 3D 生成框架 GaussianAnything,针对现有问题引入了一种交互式的点云结构化潜空间,实现了可扩展的、高质量的 3D 生成,并支持几何-纹理解耦生成与可控编辑能力。
人类智慧的一大特征是能够分步骤创造复杂作品,例如绘画、手工艺和烹饪等,这些过程体现了逻辑与美学的融合。
Meta的视频版分割一切——Segment Anything Model 2(SAM 2),又火了一把。
Segment Anything Model 2(SAM 2)在传统视频目标分割任务大放异彩,引起了众多关注。然而,港中文和上海 AI Lab 的研究团队发现 SAM 2 的贪婪选择策略容易陷入「错误累积」的问题,即一次错误的分割掩码选择将影响后续帧的分割结果,导致整个视频分割性能的下降。这个问题在长视频分割任务中显得更加严重。
如何全模态大模型与人类的意图相对齐,已成为一个极具前瞻性且至关重要的挑战。
原来物理还能这么学。
只需30秒,AI就能像3D建模师一样,在各种指示下生成高质量人造Mesh。
近日,字节跳动大模型团队开发的成果 Depth Anything V2 ,入选苹果公司 Core ML 模型库,目前已呈现在开发者相关页面中。
第一个针对「Segment Anything」大模型的域适应策略来了!相关论文已被CVPR 2024 接收。