
CVPR满分论文 | 英伟达开源双目深度估计大模型FoundationStereo
CVPR满分论文 | 英伟达开源双目深度估计大模型FoundationStereo本文介绍了 FoundationStereo,一种用于立体深度估计的基础模型,旨在实现强大的零样本泛化能力。
本文介绍了 FoundationStereo,一种用于立体深度估计的基础模型,旨在实现强大的零样本泛化能力。
双人动作生成新SOTA!
如何从一张普通的单幅图像准确估计物体的三维法线和材质属性,是计算机视觉与图形学领域长期关注的难题。
4D LangSplat通过结合多模态大语言模型和动态三维高斯泼溅技术,成功构建了动态语义场,能够高效且精准地完成动态场景下的开放文本查询任务。该方法利用多模态大模型生成物体级的语言描述,并通过状态变化网络实现语义特征的平滑建模,显著提升了动态语义场的建模能力。
当你翻开相册,看到一张平淡无奇的风景照,是否希望它能更温暖、更浪漫,甚至更忧郁?现在,EmoEdit 让这一切成为可能 —— 只需输入一个简单的情感词,EmoEdit 便能巧妙调整画面,使观众感知你想传递的情感。
一夜之间,CV被大模型“解决”了(狗头)。万物皆可吉卜力之后,GPT-4o原生多模态图像生成更多玩法被开发出来。万物皆可吉卜力之后,GPT-4o原生多模态图像生成更多玩法被开发出来。
三维高斯泼溅(3D Gaussian Splatting, 3DGS)技术基于高斯分布的概率模型叠加来表征场景,但其重建结果在几何和纹理边界处往往存在模糊问题。
图像编辑大礼包!美图5篇技术论文入围CVPR 2025。
3D 视觉定位(3D Visual Grounding, 3DVG)是智能体理解和交互三维世界的重要任务,旨在让 AI 根据自然语言描述在 3D 场景中找到指定物体。
香港科技大学谭平教授团队在 CVPR 2025 发表两项三维生成技术框架,核心代码全部开源,助力三维生成技术的开放与进步。其中 Craftman3D 获得三个评委一致满分,并被全球多家知名企业如全球最大的多人在线游戏创作平台 Roblox, 腾讯混元 Hunyuan3D-2,XR 实验室的 XR-3DGen 和海外初创公司 CSM 的 3D 创作平台等重量级项目的引用与认可。