
DeepSeek、OpenAI、Kimi视觉推理到底哪家强?港中文MMLab推出推理基准MME-COT
DeepSeek、OpenAI、Kimi视觉推理到底哪家强?港中文MMLab推出推理基准MME-COTOpenAI o1和DeepSeek-R1靠链式思维(Chain-of-Thought, CoT)展示了超强的推理能力,但这一能力能多大程度地帮助视觉推理,又应该如何细粒度地评估视觉推理呢?
OpenAI o1和DeepSeek-R1靠链式思维(Chain-of-Thought, CoT)展示了超强的推理能力,但这一能力能多大程度地帮助视觉推理,又应该如何细粒度地评估视觉推理呢?
近日,微软和剑桥大学公布推理新方法:多模态思维可视化MVoT。新方法可以边推理,边「想象」,同时利用文本和图像信息学习,在实验中比CoT拥有更好的可解释性和稳健性,复杂情况下甚至比CoT强20%。还可以与CoT组合,进一步提升模型性能。
图像生成模型,也用上思维链(CoT)了!此外,作者还提出了两种专门针对该任务的新型奖励模型——潜力评估奖励模型。(Potential Assessment Reward Model,PARM)及其增强版本PARM++。
o1背后的推理原理,斯坦福和伯克利帮我们总结好了!
意图识别及其在智能设计中的应用
Meta-CoT 通过显式建模生成特定思维链(CoT)所需的底层推理过程,扩展了传统的思维链方法。
最近,类 o1 模型的出现,验证了长思维链 (CoT) 在数学和编码等推理任务中的有效性。在长思考(long thought)的帮助下,LLM 倾向于探索、反思和自我改进推理过程,以获得更准确的答案。
在大语言模型(LLM)的发展历程中,思维链(Chain of Thought,CoT)推理无疑是一个重要的里程碑。
针对大语言模型的推理任务,近日,Meta田渊栋团队提出了一个新的范式:连续思维链,对比传统的CoT,性能更强,效率更高。
大语言模型(LLM)在自然语言处理领域取得了巨大突破,但在复杂推理任务上仍面临着显著挑战。现有的Chain-of-Thought(CoT)和Tree-of-Thought(ToT)等方法虽然通过分解问题或结构化提示来增强推理能力,但它们通常只进行单次推理过程,无法修正错误的推理路径,这严重限制了推理的准确性。