谷歌DeepMind开发的AlphaFold一夜之间颠覆了生物学,这一革命性的突破背后,有一支怎样的团队?AlphaFold的缔造者之一、DeepMind研究副总裁分享了成功的秘密——如何组建一个团队来应对这一巨大的跨学科挑战并取得胜利。
谷歌DeepMind开发的AlphaFold一夜之间颠覆了生物学,这一革命性的突破背后,有一支怎样的团队?AlphaFold的缔造者之一、DeepMind研究副总裁分享了成功的秘密——如何组建一个团队来应对这一巨大的跨学科挑战并取得胜利。
DeepMind发表了一篇名为「To Believe or Not to Believe Your LLM」的新论文,探讨了LLM的不确定性量化问题,通过「迭代提示」成功将LLM的认知不确定性和偶然不确定性解耦。研究还将新推导出的幻觉检测算法应用于Gemini,结果表明,与基线方法相比,该方法能有效检测幻觉。
最近的一系列研究表明,纯解码器生成模型可以通过训练利用下一个 token 预测生成有用的表征,从而成功地生成多种模态(如音频、图像或状态 - 动作序列)的新序列,从文本、蛋白质、音频到图像,甚至是状态序列。
AlphaFold3的横空出世再次震撼了整个学术界,然而谷歌DeepMind的「不开源」引起学界不满,AlphaFold服务器遭到黑客攻击,开源项目也开始发力。
刚刚,谷歌DeepMind、JHU、牛津等发布研究,证实GPT-4的心智理论已经完全达到成年人类水平,在更复杂的第6阶推理上,更是大幅超越人类!此前已经证实,GPT-4比人类更能理解语言中的讽刺和暗示。在心智理论上,人类是彻底被LLM甩在后面了。
AGI发展观点多元,技术风险需警惕管理。
在线和离线对齐算法的性能差距根源何在?DeepMind实证剖析出炉
一种全新的神经网络架构KAN,诞生了! 与传统的MLP架构截然不同,且能用更少的参数在数学、物理问题上取得更高精度。
就在最近,清华大学SuperBench团队的新一轮全球大模型评测结果出炉了!
最近几年,AI技术的发展远远超出普通大众和研究者的预期,「通用人工智能(AGI)」的概念也从科幻小说中走进了日常生活的讨论中,成为了许多科技公司和研究机构所追求的最终目标。