拖拽式搭建分布式Agent工作流!Maze让非技术人员几分钟搞定复杂任务
拖拽式搭建分布式Agent工作流!Maze让非技术人员几分钟搞定复杂任务在大模型智能体(LLM Agent)落地过程中,复杂工作流的高效执行、资源冲突、跨框架兼容、分布式部署等问题一直困扰着开发者。而一款名为Maze的分布式智能体工作流框架,正以任务级精细化管理、智能资源调度、多场景部署支持等核心优势,为这些痛点提供一站式解决方案。
在大模型智能体(LLM Agent)落地过程中,复杂工作流的高效执行、资源冲突、跨框架兼容、分布式部署等问题一直困扰着开发者。而一款名为Maze的分布式智能体工作流框架,正以任务级精细化管理、智能资源调度、多场景部署支持等核心优势,为这些痛点提供一站式解决方案。
近日,清华朱军等团队提出了一种统一的多模态生成框架 UniCardio,在单扩散模型中同时实现了心血管信号的去噪、插补与跨模态生成,为真实场景下的人工智能辅助医疗提供了一种新的解决思路。
现有的AI视频生成模型虽然在短片上效果惊人,但面对一首完整的歌曲时往往束手无策——画面不连贯、人物换脸、甚至完全不理会歌词含义。
做agent简单,但是做能落地的agent难,做能落地的长周期agent更是难上加难!
在空间智能(Spatial Intelligence)飞速发展的今天,全景视角因其 360° 的环绕覆盖能力,成为了机器人导航、自动驾驶及虚拟现实的核心基石。然而,全景深度估计长期面临 “数据荒” 与 “模型泛化差” 的瓶颈。
在 LLM Agent 领域,有一个常见的问题:Agent 明明 "看到了" 错误信息,却总是重蹈覆辙。
在电影与虚拟制作中,「看清一个人」从来不是看清某一帧。导演通过镜头运动与光线变化,让观众在不同视角、不同光照条件下逐步建立对一个角色的完整认知。然而,在当前大量 customizing video generation model 的研究中,这个最基本的事实,却往往被忽视。
企业级场景和Vibe Coding,很大程度是相悖的。 文|邓咏仪 编辑|苏建勋 仅用半年时间,杨萍就目睹了AI Coding赛道有多疯狂。 2024年,Vibe Coding赛道发展如火如荼。Cur
如果一项任务主要涉及文本处理,并且你拥有完善的数据渠道,能够获取完成该任务所需的全部文本信息,那么人工智能完成这项任务的难度就会较低。
Medeo是最近最令我好奇的AI视频Agent。