
LLM进入「拖拽时代」!只靠Prompt,几秒定制一个大模型,效率飙升12000倍
LLM进入「拖拽时代」!只靠Prompt,几秒定制一个大模型,效率飙升12000倍最近,来自NUS、UT Austin等机构的研究人员创新性地提出了一种「拖拽式大语言模型」(DnD),它可以基于提示词快速生成模型参数,无需微调就能适应任务。不仅效率最高提升12000倍,而且具备出色的零样本泛化能力。
最近,来自NUS、UT Austin等机构的研究人员创新性地提出了一种「拖拽式大语言模型」(DnD),它可以基于提示词快速生成模型参数,无需微调就能适应任务。不仅效率最高提升12000倍,而且具备出色的零样本泛化能力。
在 AI 领域,英伟达开发的 CUDA 是驱动大语言模型(LLM)训练和推理的核心计算引擎。
只需修改两行代码,RAG向量检索效率暴涨30%!
我们常把LangGraph、RAG、memory、evals等工具比作乐高积木,经验丰富的人知道如何搭配使用,就能迅速解决问题
当前,Agentic RAG(Retrieval-Augmented Generation)正逐步成为大型语言模型访问外部知识的关键路径。但在真实实践中,搜索智能体的强化学习训练并未展现出预期的稳定优势。一方面,部分方法优化的目标与真实下游需求存在偏离,另一方面,搜索器与生成器间的耦合也影响了泛化与部署效率。
GraphRAG的索引速度慢,LightRAG的查询延迟高?
作者介绍: 本文作者来自通义实验室 RAG 团队,致力于面向下一代 RAG 技术进行基础研究。该团队 WebWalker 工作近期也被 ACL 2025 main conference 录用。
知识图谱(KGs)已经可以很好地将海量的复杂信息整理成结构化的、机器可读的知识,但目前的构建方法仍需要由领域专家预先创建模式,这限制了KGs的可扩展性、适应性和领域覆盖范围。
知识图谱虽然功能强大,但在实际场景中实现它们并非一帆风顺。我们必须意识到其中的挑战、局限性和潜在风险,包括技术问题,比如可扩展性、数据质量、模式复杂性、与非结构化或动态数据的集成障碍,以及偏见和隐私等道德问题。
在数字化时代,视觉信息在知识传递和决策支持中的重要性日益凸显。然而,传统的检索增强型生成(RAG)方法在处理视觉丰富信息时面临着诸多挑战。一方面,传统的基于文本的方法无法处理视觉相关数据;另一方面,现有的视觉 RAG 方法受限于定义的固定流程,难以有效激活模型的推理能力。