
DeepSeek-R1 x Agentic RAG:构建带"深度思考"开关的知识研究助理|深度长文
DeepSeek-R1 x Agentic RAG:构建带"深度思考"开关的知识研究助理|深度长文RAG是一种基于“检索结果”做推理的应用,这大大限制了类似DeepSeek-R1模型的发挥空间。但又的确存在将RAG的准确性与DeepSeek深度思考能力结合的场景,而不仅仅是回答事实性问题。比如:
RAG是一种基于“检索结果”做推理的应用,这大大限制了类似DeepSeek-R1模型的发挥空间。但又的确存在将RAG的准确性与DeepSeek深度思考能力结合的场景,而不仅仅是回答事实性问题。比如:
什么,你在开发RAG竟然还没听说过Embedding模型还有排名?在AI应用开发热潮中,Embedding模型的选择已成为决定RAG系统成败的关键因素。然而,令人惊讶的是,许多开发者仍依靠直觉或跟风选择模型,而非基于系统化评估。
零基础逆袭!2年靠AI自学编程打造3款千万级APP,揭秘TikTok流量红利+9.9美金订阅制,如何用百元营销撬动百万利润?
Zep,一个为大模型智能体提供长期记忆的插件,能将智能体的记忆组织成情节,从这些情节中提取实体及其关系,并将它们存储在知识图谱中,从而让用户以低代码的方式为智能力构建长期记忆。
文章主要是实现了中英文版本的BM25算法(主要就是分词部分有区别),算法可能也有缺陷,恳请看见的大佬指点指点,虽然也有比我实现的要更优秀的第三方库,比如bm25s
最初,查询扩展是为那些靠关键词匹配来判断相关性的搜索系统设计的,比如 tf-idf 或其他稀疏向量方案。这类方法有些天然的缺陷:词语稍微变个形式,像 "ran" 和 "running",或者 "optimise" 和 "optimize",都会影响匹配结果。虽然可以用语言预处理来解决一部分问题,但远远不够。技术术语、同义词和相关词就更难处理了。
今天向大家介绍一项来自香港大学黄超教授实验室的最新科研成果 VideoRAG。这项创新性的研究突破了超长视频理解任务中的时长限制,仅凭单张 RTX 3090 GPU (24GB) 就能高效理解数百小时的超长视频内容。
RAG系统的搭建与优化是一项庞大且复杂的系统工程,通常需要兼顾测试制定、检索调优、模型调优等关键环节,繁琐的工作流程往往让人无从下手。
最近,AI界被推理模型刷屏了。国内各家的推理模型,在新年到来之际不断刷新我们的认知。不过,当我们在实际应用中考量大模型,衡量好不好用的标准,就绝不仅仅局限于其性能和规模了。
用AI过一个赛博新年。再有三天,就要进入蛇年了。各家 AI 厂商都憋足了劲儿想搞波大的,AI 全家福、AI 写春联、AI 贺岁短片统统整上,甚至还有跟亲戚激情对线的 AI「嘴替」。