
对话CMU李磊:好的AI学者绝不只搞“纯学术”,大厂AI Lab请集中资源干大事
对话CMU李磊:好的AI学者绝不只搞“纯学术”,大厂AI Lab请集中资源干大事2002年,在拿下中国高校第一个ACM(计算机领域最顶尖的程序设计大赛)金牌后,上海交大设立了“ACM班”,这个用最高竞赛命名的班级后来人尽皆知,成为中国AI人才的重要阵地。也在那年,李磊成为ACM班第一届的学生。在ACM班他第一次意识到,“原来计算机能帮助解决人类的这么多问题。”
2002年,在拿下中国高校第一个ACM(计算机领域最顶尖的程序设计大赛)金牌后,上海交大设立了“ACM班”,这个用最高竞赛命名的班级后来人尽皆知,成为中国AI人才的重要阵地。也在那年,李磊成为ACM班第一届的学生。在ACM班他第一次意识到,“原来计算机能帮助解决人类的这么多问题。”
大模型巨无霸体量,让端侧部署望而却步?华为联手中科大提出CBQ新方案,仅用0.1%的训练数据实现7倍压缩率,保留99%精度。
全球网友用闲置显卡组团训练大模型。40B大模型、20万亿token,创下了互联网上最大规模的预训练新纪录!去中心化AI的反攻,正式开始。OpenAI等巨头的算力霸权,这次真要凉了?
2023年,业界还在卷Scaling Law,不断突破参数规模和数据规模时,微软亚洲研究院张丽团队就选择了另一条路径。
Vending-Bench模拟环境可以测试大模型管理自动售货机的能力,结果显示,Claude 3.5 Sonnet表现最佳,人类屈居第四!
围棋因其独特的复杂性和对人类智能的深刻体现,可作为衡量AI专业能力最具代表性的任务之一。
现有的数据合成方法在合理性和分布一致性方面存在不足,且缺乏自动适配不同数据的能力,扩展性较差。
而马毅是那类觉得不够的人,他于无声处开始提问:智能的本质是什么?自 2000 年从伯克利大学博士毕业以来,马毅先后任职于伊利诺伊大学香槟分校(UIUC)、微软亚研院、上海科技大学、伯克利大学和香港大学,现担任香港大学计算与数据科学学院院长。他和团队提出的压缩感知技术,到现在还在影响计算机视觉中模式识别领域的发展。
在文档理解领域,多模态大模型(MLLMs)正以惊人的速度进化。从基础文档图像识别到复杂文档理解,它们在扫描或数字文档基准测试(如 DocVQA、ChartQA)中表现出色,这似乎表明 MLLMs 已很好地解决了文档理解问题。然而,现有的文档理解基准存在两大核心缺陷:
MedGemma是谷歌 “健康人工智能开发者基础”(Health AI Developer Foundations)计划的核心项目。基于 Gemma 3 架构, MedGemma提供多模态和纯文本两种模型变体,旨在降低医疗 AI 开发门槛。