
港大字节提出多模态大模型新范式,模拟人类先感知后认知,精确定位图中物体
港大字节提出多模态大模型新范式,模拟人类先感知后认知,精确定位图中物体当前,多模态大模型 (MLLM)在多项视觉任务上展现出了强大的认知理解能力。 然而大部分多模态大模型局限于单向的图像理解,难以将理解的内容映射回图像上。 比如,模型能轻易说出图中有哪些物体,但无法将物体在图中准确标识出来。 定位能力的缺失直接限制了多模态大模型在图像编辑,自动驾驶,机器人控制等下游领域的应用。针对这一问题,港大和字节跳动商业化团队的研究人员提出了一种新范式Groma