
当奖励成为漏洞:从对齐本质出发自动「越狱」大语言模型
当奖励成为漏洞:从对齐本质出发自动「越狱」大语言模型本文第一作者为香港大学博士研究生谢知晖,主要研究兴趣为大模型对齐与强化学习。
本文第一作者为香港大学博士研究生谢知晖,主要研究兴趣为大模型对齐与强化学习。
Emory大学的研究团队提出了一种创新的方法,将大语言模型(LLM)在文本图(Text-Attributed Graph, 缩写为TAG)学习中的强大能力蒸馏到本地模型中,以应对文本图学习中的数据稀缺、隐私保护和成本问题。通过训练一个解释器模型来理解LLM的推理过程,并对学生模型进行对齐优化,在多个数据集上实现了显著的性能提升,平均提高了6.2%。
SFT、RLHF 和 DPO 都是先估计 LLMs 本身的偏好,再与人类的偏好进行对齐
前段时间冲上热搜的问题「9.11比9.9大吗?」,让几乎所有LLM集体翻车。看似热度已过,但AI界大佬Andrej Karpathy却从中看出了当前大模型技术的本质缺陷,以及未来的潜在改进方向。
为了对齐 LLM,各路研究者妙招连连。
大模型展现出了卓越的指令跟从和任务泛化的能力,这种独特的能力源自 LLMs 在训练中使用了指令跟随数据以及人类反馈强化学习(RLHF)。
Meta、UC伯克利、NYU共同提出元奖励语言模型,给「超级对齐」指条明路:让AI自己当裁判,自我改进对齐,效果秒杀自我奖励模型。
音视频大语言模型在处理视频内容时,往往未能充分发挥语音的作用。video-SALMONN模型通过三部分创新:音视频编码和时间对齐、多分辨率因果Q-Former、多样性损失函数和混合未配对音视频数据训练。该模型不仅在单一模态任务上表现优异,更在视听联合任务中展现了卓越的性能,证明了其全面性和准确性。
大型语言模型(LLM)展现出了令人印象深刻的智能水平。因此,确保其安全性显得至关重要。已有研究提出了各种策略,以使 LLM 与人类伦理道德对齐。然而,当前的先进模型例如 GPT-4 和 LLaMA3-70b-Instruct 仍然容易受到越狱攻击,并被用于恶意用途。
知识图谱作为结构化知识的重要载体,广泛应用于信息检索、电商、决策推理等众多领域。然而,由于不同机构或方法构建的知识图谱存在表示方式、覆盖范围等方面的差异,如何有效地将不同的知识图谱进行融合,以获得更加全面、丰富的知识体系,成为提高知识图谱覆盖度和准确率的重要问题,这就是知识图谱对齐(Knowledge Graph Alignment)任务所要解决的核心挑战。