
图学习新突破:一个统一框架连接空域和频域
图学习新突破:一个统一框架连接空域和频域图数据学习在过去几年中取得了显著的进展,图神经网络(GNN)在此过程中起到了核心作用。然而,不同的 GNN 方法在概念和实现上的差异,对理解和应用图学习算法构成了挑战。
图数据学习在过去几年中取得了显著的进展,图神经网络(GNN)在此过程中起到了核心作用。然而,不同的 GNN 方法在概念和实现上的差异,对理解和应用图学习算法构成了挑战。
现有的深伪检测方法大多依赖于配对数据,即一张压缩图像和其对应的原始图像来训练模型,这在许多实际的开放环境中并不适用。尤其是在社交媒体等开放网络环境(OSN)中,图像通常经过多种压缩处理,导致图像质量受到影响,深伪识别也因此变得异常困难。
微软下一代14B小模型Phi-4出世了!仅用了40%合成数据,在数学性能上击败了GPT-4o,最新36页技术报告出炉。
GPT-5被曝效果远不达预期。 OpenAI连续12场发布会刚刚结束,大家最想看的GPT-5/4.5影子都没有,于是华尔街日报这边爆料了。
联想第六代“海神”液冷技术,已实现支持多类型GPU、CPU,散热效率可达98%,PUE最佳可降至1.1,极大降低了数据中心的能耗水平。
如今,多模态大模型(MLLM)已经在视觉理解领域取得了长足进步,其中视觉指令调整方法已被广泛应用。该方法是具有数据和计算效率方面的优势,其有效性表明大语言模型(LLM)拥有了大量固有的视觉知识,使得它们能够在指令调整过程中有效地学习和发展视觉理解。
Meta斯坦福大学联合团队全面研究多模态大模型(LMM)中驱动视频理解的机制,扩展了视频多模态大模型的设计空间,提出新的训练调度和数据混合方法,并通过语言先验或单帧输入解决了已有的评价基准中的低效问题。
本文中,香港大学与 Adobe 联合提出名为 UniReal 的全新图像编辑与生成范式。该方法将多种图像任务统一到视频生成框架中,通过将不同类别和数量的输入/输出图像建模为视频帧,从大规模真实视频数据中学习属性、姿态、光照等多种变化规律,从而实现高保真的生成效果。
AutoPatent框架能够自动化生成高质量的专利文档,大幅提高专利撰写效率,有望简化专利申请流程,降低成本,促进创新保护。
自2022年年末OpenAI发布ChatGPT以来,英伟达的市值就上涨了近5倍,甚至超越苹果成为了全球最值钱的公司。眼看着英伟达如今能够让OpenAI、Meta、xAI等一众AI厂商排队交钱,也就使得越来越多的公司想成为此次AI淘金热中的“卖水人”。