
低Token高精度!字节复旦推出自适应推理框架CAR
低Token高精度!字节复旦推出自适应推理框架CAR过度依赖CoT思维链推理会降低模型性能,有新解了! 来自字节、复旦大学的研究人员提出自适应推理框架CAR,能根据模型困惑度动态选择短回答或详细的长文本推理,最终实现了准确性与效率的最佳平衡。
过度依赖CoT思维链推理会降低模型性能,有新解了! 来自字节、复旦大学的研究人员提出自适应推理框架CAR,能根据模型困惑度动态选择短回答或详细的长文本推理,最终实现了准确性与效率的最佳平衡。
LLM发展到今天,下一步该往哪个方向探索?
近期,具身智能公司「优理奇机器人 UniX AI」完成数亿元天使轮及天使+轮融资,中关村前沿基金,赛纳资本及长安私人资本参与本轮融资。本轮融资将用于加速研发多模态具身智能大模型与通用机器人本体的同步演进,以及面向多个泛商业服务和C端场景落地与交付。
大模型做数独,总体正确率只有15%???
从OpenAI 的 4o 到 Stable Diffusion,能够根据文本提示生成逼真图像的 AI 基础模型如今已比比皆是。相比之下,能够仅凭文本提示就生成完整、连贯的 3D 在线环境的基础模型才刚刚崭露头角。
1+1等于几?
在日益强调“思维能力”的大语言模型时代,如何让模型在“难”的问题上展开推理,而不是无差别地“想个不停”,成为当前智能推理研究的重要课题。
您是否遇到过这样的困扰:明明搭建了完善的RAG系统,但Agent总是回答过时的信息,或者面对历史偏好变化时一脸茫然?
既能提升模型能力,又不显著增加内存和时间成本,LLM第三种Scaling Law被提出了。
2025年上半年,Agent成为大模型领域讨论最多的主题之一。