智能之镜:NeuroAI如何反映大脑与人工智能的未来
智能之镜:NeuroAI如何反映大脑与人工智能的未来在大语言模型能力如此强大的背景下,AI与神经科学之间的联系变得前所未有地重要,催生了一个新兴领域:NeuroAI。它关注两个角度的问题:
在大语言模型能力如此强大的背景下,AI与神经科学之间的联系变得前所未有地重要,催生了一个新兴领域:NeuroAI。它关注两个角度的问题:
LLM正以前所未有的速度进化:METR发现,它们的智能每7个月就翻一番。到了2030年,一个模型可能只需几小时,就能搞定人类工程师几个月的工作。别眨眼,你的岗位或许已在倒计时中。
Zeju Qiu和Tim Z. Xiao是德国马普所博士生,Simon Buchholz和Maximilian Dax担任德国马普所博士后研究员
多模态大模型通常是在大型预训练语言模型(LLM)的基础上扩展而来。尽管原始的 LLM 并不具备视觉理解能力,但经过多模态训练后,这些模型却能在各类视觉相关任务中展现出强大的表现。
反思技术因其简单性和有效性受到了广泛的研究和应用,具体表现为在大语言模型遇到障碍或困难时,提示其“再想一下”,可以显著提升性能 [1]。然而,2024 年谷歌 DeepMind 的研究人员在一项研究中指出,大模型其实分不清对与错,如果不是仅仅提示模型反思那些它回答错误的问题,这样的提示策略反而可能让模型更倾向于把回答正确的答案改错 [2]。
如今,强化学习(Reinforcement Learning,RL)在多个领域已取得显著成果。
Vevo Therapeutics(现为Tahoe)与Arc研究所,两家分别在生物技术商业转化和非营利性基础研究领域领先的机构,于2025年2月联合发布了一项里程碑式的成果:全球最大的单细胞药物扰动数据集Tahoe-100M。
Kimi K2 发布了 2 天,我也测了足足 2 天。如果仔细观察 Kimi 这次的官方发布稿,不难发现 K2 强调的重点:Agent 与 Coding 能力。
首个能跨领域精准预测人类认知的基础模型诞生!
一年前,你想让AI画出“一只穿着复古皮衣、站在东京街头、日落光线打在墨镜上的猫”,得试个五六次,画出来要么穿错衣服,要么猫的动作奇特,要么背景得靠开盲盒抽卡。今天,在一众主流图像模型上,这句提示词几乎能一次命中。