AI狂欢的背后:算力的能耗,我们该担忧吗? | Nature报道
AI狂欢的背后:算力的能耗,我们该担忧吗? | Nature报道ChatGPT等AI模型爆发式增长引发关键问题:这场AI革命需要消耗多少能源?本文探究数据中心在乡村地区的快速扩张,以弗吉尼亚州为例,揭示研究者如何通过供应链分析和直接测量两种方法估算AI能耗。
ChatGPT等AI模型爆发式增长引发关键问题:这场AI革命需要消耗多少能源?本文探究数据中心在乡村地区的快速扩张,以弗吉尼亚州为例,揭示研究者如何通过供应链分析和直接测量两种方法估算AI能耗。
近年来,大语言模型 LLMs 在多种任务上的卓越表现已得到广泛认可。然而,要实现其高效部署,精细的超参数优化至关重要。为了探究最佳超参数的规律,我们开展了大规模的实证研究,通过在不同配置上进行网格搜索,我们揭示了一套通用的最优超参数缩放定律(Optimal Hyperparameter Scaling Law)。
随着大模型时代的到来,搜推广模型是否具备新的进化空间?能否像深度学习时期那样迸发出旺盛的迭代生命力?带着这样的期待,阿里妈妈搜索广告在过去两年的持续探索中,逐步厘清了一些关键问题,成功落地了多个优化方向。
不怕推理模型简单问题过度思考了,能动态调整CoT的新推理范式SCoT来了!
最新研究显示,以超强推理爆红的DeepSeek-R1模型竟藏隐形危险——
它能像人眼一样,在文本、视觉输入和无提示范式等不同机制下进行检测和分割。
近些年,大模型的发展可谓是繁花似锦、烈火烹油。从 2018 年 OpenAI 公司提出了 GPT-1 开始,到 2022 年底的 GPT-3,再到现在国内外大模型的「百模争锋」,DeepSeek 异军突起,各类大模型应用层出不穷。
大语言模型(LLM)在推理领域的最新成果表明了通过扩展测试时计算来提高推理能力的潜力,比如 OpenAI 的 o1 系列。
号称地表最强的M3 Ultra,本地跑满血版DeepSeek R1,效果到底如何?
224张GPU,训出开源视频生成新SOTA!Open-Sora 2.0正式发布。 11B参数规模,性能可直追HunyuanVideo和Step-Video(30B)。