
超越DeepSeek推理,效率更高!斯坦福马腾宇新作:有限数据,无限迭代
超越DeepSeek推理,效率更高!斯坦福马腾宇新作:有限数据,无限迭代STP(自博弈定理证明器)让模型扮演「猜想者」和「证明者」,互相提供训练信号,在有限的数据下实现了无限自我改进,在Lean和Isabelle验证器上的表现显著优于现有方法,证明成功率翻倍,并在多个基准测试中达到最先进的性能。
STP(自博弈定理证明器)让模型扮演「猜想者」和「证明者」,互相提供训练信号,在有限的数据下实现了无限自我改进,在Lean和Isabelle验证器上的表现显著优于现有方法,证明成功率翻倍,并在多个基准测试中达到最先进的性能。
Diffusion Transformer模型模型通过token粒度的缓存方法,实现了图像和视频生成模型上无需训练的两倍以上的加速。
RISC-V 正在成为 AI 原生计算架构。
在 Scaling Law 背景下,预训练的数据选择变得越来越重要。然而现有的方法依赖于有限的启发式和人类的直觉,缺乏全面和明确的指导方针。在此背景下,该研究提出了一个数据管理器 DataMan,其可以从 14 个质量评估维度对 15 个常见应用领域的预训练数据进行全面质量评分和领域识别。
AI模型的训练和推理成本在过去18个月内大幅下降,达到180倍的成本降低。这一趋势推动了更多开源项目的涌现。
本文是对亚马逊AWS研究团队最新发表的APO(自动提示词优化)技术综述的深度解读。该研究由Kiran Ramnath、Kang Zhou等21位来自AWS的资深研究者共同完成,团队成员来自不同技术背景,涵盖了机器学习、自然语言处理、系统优化等多个专业领域。
高效闭环控制是复杂系统控制的核心要求。传统控制方法受限于效率与适用性挑战;而新兴的扩散模型虽然表现出色,却难以满足高效闭环控制的要求。西湖大学研究团队最新提出的 CL-DiffPhyCon 框架,通过异步并行去噪技术,在闭环控制要求下,显著提升了控制效率和效果。论文最近被人工智能领域顶级会议 ICLR 2025 接收。
哈尔滨工业大学团队提出HEROS-GAN技术,通过生成式深度学习将低成本加速度计信号转化为高精度信号,突破其精度与量程瓶颈。该技术利用最优传输监督和拉普拉斯能量调制,使0.5美元的传感器达到200美元高端设备的性能,为工业、医疗等领域应用带来变革。
AI引用正确率仅有4.2- 18.5%,用Deep Research就提高了引用正确率吗?似乎用Think&Cite框架的SG-MCTS和过程奖励机制PRM可以解决引用问题,生成可信内容。
当前的 AI 领域,可以说 Transformer 与扩散模型是最热门的模型架构。也因此,有不少研究团队都在尝试将这两种架构融合到一起,以两者之长探索新一代的模型范式,比如我们之前报道过的 LLaDA。不过,之前这些成果都还只是研究探索,并未真正实现大规模应用。