斯坦福华人研究火了:45分钟让你的论文变身AI智能体!
斯坦福华人研究火了:45分钟让你的论文变身AI智能体!斯坦福大学研究人员提出了Paper2Agent,将静态论文转化为可交互的AI智能体,让学术成果可以直接被「调用」,为科研知识传播开辟了新模式,并为构建AI共研生态奠定基础。
斯坦福大学研究人员提出了Paper2Agent,将静态论文转化为可交互的AI智能体,让学术成果可以直接被「调用」,为科研知识传播开辟了新模式,并为构建AI共研生态奠定基础。
清华大学朱军教授团队,NVIDIA Deep Imagination 研究组与斯坦福 Stefano Ermon 团队联合提出了一种全新的扩散模型强化学习(RL)范式 ——Diffusion Negative-aware FineTuning (DiffusionNFT)。该方法首次突破现有 RL 对扩散模型的基本假设,直接在前向加噪过程(forward process)上进行优化
该团队 2025 年的研究《Reasoning by superposition: A theoretical perspective on chain of continuous thought》已从理论上指出,连续思维链的一个关键优势在于它能使模型在叠加(superposition)状态下进行推理:当模型面对多个可能的推理路径而无法确定哪一个是正确时,它可以在连续空间中并行地保留所有可能的路
论文提出的方法名为 RL4HS,它使用了片段级奖励(span-level rewards)和类别感知的 GRPO(Class-Aware Group Relative Policy Optimization),从而避免模型偷懒、只输出无错误预测。
近日,来自 MetaGPT、蒙特利尔大学和 Mila 研究所、麦吉尔大学、耶鲁大学等机构的研究团队发布 CARE 框架,一个新颖的原生检索增强推理框架,教会 LLM 将推理过程中的上下文事实与模型自身的检索能力有机结合起来。该框架现已全面开源,包括训练数据集、训练代码、模型 checkpoints 和评估代码,为社区提供一套完整的、可复现工作。
早在 2021 年,研究人员就已经发现了深度神经网络常常表现出一种令人困惑的现象,模型在早期训练阶段对训练数据的记忆能力较弱,但随着持续训练,在某一个时间点,会突然从记忆转向强泛化。
不是拼凑知识点,AI这次是真搞研究。一个叫Virtuous Machines的AI系统,花了17小时、114美元,找了288个真人做实验,写了一篇30页的学术论文。而且还是从选题到成稿全自动化速通!?
2025年9月17日,中国科学院香港创新研究院人工智能与机器人创新中心(CAIR)在香港正式开源发布其最新科研成果——EchoCare“聆音”超声基座大模型(简称“聆音”)。该模型基于超过450万张、涵盖50多个人体器官的大规模超声影像数据集训练而成,在器官识别、器官分割、病灶分类等10余项典型超声医学任务测试中表现卓越,性能全面登顶。
本文作者团队来自 Insta360 影石研究院及其合作高校。目前,Insta360 正在面向世界模型、多模态大模型、生成式模型等前沿方向招聘实习生与全职算法工程师,欢迎有志于前沿 AI 研究与落地的同
QuestA(问题增强)引入了一种方法,用于提升强化学习中的推理能力。通过在训练过程中注入部分解题提示,QuestA 实现两项重大成果