
推理AI「脑补」成瘾,废话拉满!马里兰华人学霸揭开内幕
推理AI「脑补」成瘾,废话拉满!马里兰华人学霸揭开内幕研究发现,推理模型(如DeepSeek-R1、o1)遇到「缺失前提」(MiP)的问题时,这些模型往往表现失常:回答长度激增、计算资源浪费。本文基于马里兰大学和利哈伊大学的最新研究,深入剖析推理模型在MiP问题上的「过度思考」现象,揭示其背后的行为模式,带你一窥当前AI推理能力的真实边界。
研究发现,推理模型(如DeepSeek-R1、o1)遇到「缺失前提」(MiP)的问题时,这些模型往往表现失常:回答长度激增、计算资源浪费。本文基于马里兰大学和利哈伊大学的最新研究,深入剖析推理模型在MiP问题上的「过度思考」现象,揭示其背后的行为模式,带你一窥当前AI推理能力的真实边界。
近年来,随着大型语言模型(LLMs)的快速发展,多模态理解领域取得了前所未有的进步。像 OpenAI、InternVL 和 Qwen-VL 系列这样的最先进的视觉-语言模型(VLMs),在处理复杂的视觉-文本任务时展现了卓越的能力。
在大模型迈向推理时代的当下,数学推理能力已成为衡量语言模型智能上限的关键指标。
终于,华为盘古大模型系列上新了,而且是昇腾原生的通用千亿级语言大模型。我们知道,如今各大科技公司纷纷发布百亿、千亿级模型。但这些大部分模型训练主要依赖英伟达的 GPU。
尽管这些论文的结论统统指向了强化学习带来的显著性能提升,但来自图宾根大学和剑桥大学的研究者发现,强化学习导致的许多「改进」可能只是噪音。「受推理领域越来越多不一致的经验说法的推动,我们对推理基准的现状进行了严格的调查,特别关注了数学推理领域评估算法进展最广泛使用的测试平台之一 HuggingFaceH4,2024;AI - MO。」
本文作者刘圳是香港中文大学(深圳)数据科学学院的助理教授,肖镇中是德国马克思普朗克-智能系统研究所和图宾根大学的博士生,刘威杨是德国马克思普朗克-智能系统研究所的研究员,Yoshua Bengio 是蒙特利尔大学和加拿大 Mila 研究所的教授,张鼎怀是微软研究院的研究员。此论文已收录于 ICLR 2025。
人和智能体共享奖励参数,这才是强化学习正确的方向?
在大模型争霸的时代,算力与效率的平衡成为决定胜负的关键。
高质量数据枯竭,传统预训练走向终点,大模型如何突破瓶颈?
大家还记得那个 ICLR 2025 首次满分接收、彻底颠覆静态图像光照编辑的工作 IC-Light 吗?