
每秒生成超30帧视频,支持实时交互!自回归视频生成新框架刷新生成效率
每秒生成超30帧视频,支持实时交互!自回归视频生成新框架刷新生成效率在A100上用310M模型,实现每秒超30帧自回归视频生成,同时画面还保持高质量!
在A100上用310M模型,实现每秒超30帧自回归视频生成,同时画面还保持高质量!
端到端多模态GUI智能体有了“自我反思”能力!南洋理工大学MMLab团队提出框架GUI-Reflection。
还记得DeepSeek-R1发布时AI圈的那波狂欢吗?"提示工程已死"、"再也不用费心写复杂提示了"、"推理模型已经聪明到不再需要学习提示词了"......这些观点在社交媒体上刷屏,连不少技术大佬都在转发。再到最近,“提示词写死了”......现实总是来得这么快——乔治梅森大学的研究者们用一个严谨得让人无法反驳的实验,狠狠打了所有人的脸!
我们人类生活在一个充满视觉和音频信息的世界中,近年来已经有很多工作利用这两个模态的信息来增强模型对视听场景的理解能力,衍生出了多种不同类型的任务,它们分别要求模型具备不同层面的能力。
知识图谱(KGs)已经可以很好地将海量的复杂信息整理成结构化的、机器可读的知识,但目前的构建方法仍需要由领域专家预先创建模式,这限制了KGs的可扩展性、适应性和领域覆盖范围。
AI能看图,也能讲故事,但能理解“物体在哪”“怎么动”吗? 空间智能,正是大模型走向具身智能的关键拼图。
谁说强化学习只能是蛋糕上的樱桃,说不定,它也可以是整个蛋糕呢?
本文将介绍 DeepMath-103K 数据集。该工作由腾讯 AI Lab 与上海交通大学团队共同完成。
视觉注意力机制,又有新突破,来自香港大学和英伟达。
第一作者陈昌和是美国密歇根大学的研究生,师从 Nima Fazeli 教授,研究方向包括基础模型、机器人学习与具身人工智能,专注于机器人操控、物理交互与控制优化。