
突破大模型推理瓶颈!首篇「Test-Time Scaling」全景综述,深入剖析AI深思之道
突破大模型推理瓶颈!首篇「Test-Time Scaling」全景综述,深入剖析AI深思之道当训练成本飙升、数据枯竭,如何继续激发大模型潜能?
当训练成本飙升、数据枯竭,如何继续激发大模型潜能?
开启「分步思考」新范式。
在视觉语言模型(Vision-Language Models,VLMs)取得突破性进展的当下,长视频理解的挑战显得愈发重要。以标准 24 帧率的标清视频为例,仅需数分钟即可产生逾百万的视觉 token,这已远超主流大语言模型 4K-128K 的上下文处理极限。
递归思考 + 自我批判,CoRT 能带来 LLM 推理力的飞跃吗?
不用引入外部数据,通过自我博弈(Self-play)就能让预训练大模型学会推理?
近年来,生成式人工智能(Generative AI)技术的突破性进展,特别是文本到图像 T2I 生成模型的快速发展,已经使 AI 系统能够根据用户输入的文本提示(prompt)生成高度逼真的图像。从早期的 DALL・E 到 Stable Diffusion、Midjourney 等模型,这一领域的技术迭代呈现出加速发展的态势。
多模态奖励模型(MRMs)在提升多模态大语言模型(MLLMs)的表现中起着至关重要的作用,在训练阶段可以提供稳定的 reward,评估阶段可以选择更好的 sample 结果,甚至单独作为 evaluator。
可控图片生成,如今已经不是什么新鲜事。甚至也不需要复杂的提示词,用户通过简单的文本描述,就能快速生成符合个人需求的创意图像。
近年来,基于视频生成模型的可交互世界生成引发了广泛关注。尽管现有方法在生成质量和交互能力上取得了显著进展,但由于上下文时间窗口受限,生成的世界在长时序下严重缺乏一致性。
长思维链让大模型具备了推理能力,但如果过度思考,就有可能成为负担。