
打破长视频理解瓶颈:HoPE混合位置编码提升VLM长度泛化能力
打破长视频理解瓶颈:HoPE混合位置编码提升VLM长度泛化能力如今的视觉语言模型 (VLM, Vision Language Models) 已经在视觉问答、图像描述等多模态任务上取得了卓越的表现。然而,它们在长视频理解和检索等长上下文任务中仍表现不佳。
如今的视觉语言模型 (VLM, Vision Language Models) 已经在视觉问答、图像描述等多模态任务上取得了卓越的表现。然而,它们在长视频理解和检索等长上下文任务中仍表现不佳。
迈向通用人工智能(AGI)的核心目标之一就是打造能在开放世界中自主探索并持续交互的智能体。随着大语言模型(LLMs)和视觉语言模型(VLMs)的飞速发展,智能体已展现出令人瞩目的跨领域任务泛化能力。
当前大型视觉语言模型(LVLMs)存在物体幻觉问题,即会生成图像中不存在的物体描述。
最近,扩散语言模型(dLLM)有点火。现在,苹果也加入这片新兴的战场了。
还在为复杂的Windows设置头疼?微软来重新定义设置界面交互了
过去几年,随着基于人类偏好的强化学习(Reinforcement Learning from Human Feedback,RLHF)的兴起,强化学习(Reinforcement Learning,RL)已成为大语言模型(Large Language Model,LLM)后训练阶段的关键技术。
在大语言模型(LLM)加速进入法律、医疗、金融等高风险应用场景的当下,“安全对齐”不再只是一个选项,而是每一位模型开发者与AI落地者都必须正面应对的挑战。
最近,来自NUS、UT Austin等机构的研究人员创新性地提出了一种「拖拽式大语言模型」(DnD),它可以基于提示词快速生成模型参数,无需微调就能适应任务。不仅效率最高提升12000倍,而且具备出色的零样本泛化能力。
根据申妈朋友圈,字节跳动发布了新一期廉政通报,披露了一起涉及 Seed 团队高层的严重违规事件。据报道,Seed 大语言模型负责人乔木与其团队所配属的一名 HRBP 在未履行申报流程的情况下,发展成为亲密关系。
斯坦福大学 2025 年春季的 CS336 课程「从头开始创造语言模型(Language Models from Scratch)」相关课程和材料现已在网上全面发布!