刚刚,由李飞飞联合领导的斯坦福大学以人为本人工智能研究所(Stanford HAI)发布了《2024 年人工智能指数报告》(Artificial Intelligence Index Report 2024)。
这份长达 300 多页的报告是 Stanford HAI 发布的第 7 份 AI Index 研究,追踪了 2023 年全球人工智能的发展趋势。
Stanford HAI 官方介绍道,「这是我们迄今为止最全面的报告,而且是在人工智能对社会的影响从未如此明显的重要时刻发布的。」
Stanford HAI 研究项目主任 Vanessa Parli 表示,「我认为最令人兴奋的人工智能研究优势是将这些大型语言模型与机器人或智能体(agent)相结合,这标志着机器人在现实世界中更有效地工作迈出了重要一步。」
与往年不同,Stanford HAI 今年扩大了研究范围,更广泛地涵盖了人工智能的技术进步、公众对该技术的看法等基本趋势。新报告揭示了 2023 年人工智能行业的 10 大主要趋势:
人工智能已在多项基准测试中超越人类,包括在图像分类、视觉推理和英语理解方面。然而,它在竞赛级数学、视觉常识推理和规划等更复杂的任务上依然落后于人类。
2023 年,产业界产生了 51 个著名的机器学习模型,而学术界只贡献了 15 个。2023 年,产学合作还产生了 21 个著名模型,创下新高。此外,108 个新发布的基础模型来自工业界,28 个来自学术界。
根据 AI Index 的估算,最先进的人工智能模型的训练成本已经达到了前所未有的水平。例如,OpenAI 的 GPT-4 估计使用了价值 7800 万美元的计算资源进行训练,而谷歌的 Gemini Ultra 的计算成本则高达 1.91 亿美元。
相比之下,几年前发布的一些最先进的模型,即原始 transformer 模型(2017 年)和 RoBERTa Large(2019 年),训练成本分别约为 900 美元和 16 万美元。
2023 年,61 个著名的人工智能模型源自美国的机构,超过欧盟的 21 个和中国的 15 个。
美国也仍然是人工智能投资的首选之地。2023 年,美国在人工智能领域的私人投资总额为 672 亿美元,是中国的近 9 倍。
然而,中国依然是美国最大的竞争对手,中国的机器人安装量居世界首位;同样,世界上大多数人工智能专利(61%)都来自中国。
AI Index 的最新研究显示,负责任的人工智能严重缺乏标准化。包括 OpenAI、谷歌和 Anthropic 在内的领先开发商主要根据不同的负责任人工智能基准测试他们的模型。这种做法使系统地比较顶级人工智能模型的风险和局限性的工作变得更加复杂。
尽管去年人工智能私人投资整体下降,但对生成式人工智能的投资激增,比 2022 年(约 30 亿美元)增长了近八倍,达到 252 亿美元。生成式人工智能领域的主要参与者,包括 OpenAI、Anthropic、Hugging Face 和 Inflection,都获得了一轮可观的融资。
2023 年,多项研究评估了人工智能对劳动力的影响,表明人工智能可以让打工人更快地完成任务,并提高他们的产出质量。这些研究还表明,人工智能有可能缩小低技能和高技能工人之间的技能差距。还有一些研究警告说,在没有适当监督的情况下使用人工智能可能会起到负面作用。
2022 年,人工智能开始推动科学发现。然而,2023 年,与科学相关的更重要的人工智能应用启动——使算法排序更高效的 AlphaDev、促进材料发现过程的 GNoME、可在一分钟内提供极其准确的 10 天天气预报的 GraphCast、成功对 7100 万种可能的错义突变中的约 89% 进行分类的 AlphaMissence。
如今,人工智能现在可以完成人类难以完成的、但对解决一些最复杂的科学问题至关重要的粗暴计算。在医疗方面,新的研究表明,医生可以利用人工智能更好地诊断乳腺癌、解读X射线和检测致命的癌症。
2023 年,全球立法程序中有 2175 次提及人工智能,几乎是上一年的两倍。美国人工智能相关法规的数量在过去一年大幅增加。2023 年,与人工智能相关的法规有 25 项,而 2016 年只有 1 项。仅去年一年,人工智能相关法规的总数就增长了 56.3%。其中一些法规包括生成式人工智能材料的版权指南和网络安全风险管理框架。
来自市场研究公司 Ipsos 的一项调查显示,在过去一年中,认为人工智能将在未来 3-5 年内极大地影响他们生活的人,比例从 60%上升到 66%。此外,52% 的人对人工智能产品和服务表示焦虑,比 2022 年上升了 13 个百分点。
在美国,来自皮尤研究中心(Pew)的数据显示,52% 的美国人表示对人工智能的担忧多于兴奋,这一比例比 2022 年的 38% 有所上升。
十年前,世界上最好的人工智能系统也无法以人类的水平对图像中的物体进行分类。人工智能在语言理解方面举步维艰,也无法解决数学问题。如今,人工智能系统在标准基准上的表现经常超过人类。
2023 年,人工智能进步加速。GPT-4、Gemini 和 Claude 3 等先进模型展示出了令人印象深刻的多模态能力:它们可以生成数十种语言的流畅文本,处理音频,甚至可以解释备忘录。随着人工智能的进步,它也越来越多地进入我们的生活。公司竞相打造基于人工智能的产品,普通大众也越来越多地使用人工智能。但是,当前的人工智能技术仍然存在重大问题。它无法可靠地处理事实、进行复杂的推理或解释其结论。
人工智能面临两个相互关联的未来。第一个,技术不断改进,应用日益广泛,对生产力和就业产生重大影响。人工智能的用途有好有坏。第二个,人工智能的应用受到技术局限的制约。无论是哪一种,政府都越来越关注。政府正在积极参与,鼓励人工智能的发展,比如资助大学研发和激励私人投资。政府还致力于管理潜在的不利因素,如对就业的影响、隐私问题、错误信息和知识产权。
在技术方面,今年的 AI Index 报告称,2023 年全球发布的新大型语言模型数量比上一年翻了一番。三分之二的模型是开源的,但性能最高的模型来自拥有封闭系统的行业参与者。
Gemini Ultra 成为首个在大规模多任务语言理解(MMLU)基准上达到人类水平的 LLM;自去年以来,模型在该基准上的性能表现提高了 15 个百分点。此外,GPT-4 在综合语言模型整体评估(HELM)基准上取得了令人印象深刻的 0.97 平均胜率分数。
虽然全球对人工智能的私人投资连续第二年减少,但对生成式人工智能的投资却急剧上升。财富 500 强企业财报电话会议中提及人工智能的次数比以往任何时候都多,而且新的研究表明,人工智能明显提高了打工人的生产率。在政策制定方面,全球在立法程序中提及人工智能的次数前所未有。美国监管机构在 2023 年通过的人工智能相关法规比以往任何时候都多。尽管如此,许多人仍对人工智能生成深度伪造等能力表示担忧。公众对人工智能有了更多的认识,研究表明,他们的反应也是焦虑的。
Ray Perrault
AI Index 联合主任
文章来自微信公众号“新智元”
【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。
项目地址:https://github.com/Significant-Gravitas/AutoGPT
【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。
项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md