ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
Llama 3细节公布!AI产品总监站台讲解:Llama系列超庞大生态系统
3485点击    2024-05-01 20:59

Llama 3的开源,再次掀起了一场大模型的热战,各家争相测评、对比模型的能力,也有团队在进行微调,开发衍生模型。



最近,Meta的AI产品总监Joe Spisak在Weights & Biases举办的会议上,针对Llama系列模型的历史、Llama 3的训练思路、开源生态系统、安全方面的工作、相关代码库,以及未来的规划进行了详细介绍。


视频总结


Llama系列模型发展历史


实际上,早在2023年2月,Meta就组织了一个团队,这个团队集结了公司内从SysML到模型开发、再到数据处理,集结了各个领域中的顶级研究员,还另外聘请了一些创新型的人才。



Llama 2模型在2023年7月份发布,可供商业使用,参数范围从7B到70B,在当时已经算是最先进的成果了;随后在8月和今年1月,Meta发布了Code Llama;12月推出Purple Llama项目,主要关注模型的安全和信任问题。



Llama 3模型介绍


研究人员使用了至少7倍于Llama 2的数据(大约2T个token)来训练Llama 3 模型(超过15T个token);


在微调方面,Llama 2模型的SFT中有一百万条人类标注数据,而在Llama 3中,Meta将微调数据量增加了10倍。



Llama 3还包括了更大的词汇表,一个新的tokenizer,运行效率更高,性能更强,并且上下文窗口也加倍了。


Joe强调,目前发布的其实是Llama 3的非常早期版本,团队原本打算将这些模型称为预发布或预览版本,因为模型并不具有计划中包含的全部功能。



研发团队针对后训练模型(即指令模型),以及基础模型本身都进行了评估,可以看到8B和70B的指令模型都优于同级对比模型,基础模型Llama 3 70B在各方面也都优于Gemini Pro 1.0模型,甚至也优于最近发布的Mistral 8*22B,总之模型的性能表现非常强劲。


Meta团队在人类评估上也做了很多工作,标注了一个包含1800个提示词的数据集,提示词基于真人使用的提示词,覆盖了12个关键的用例。



Meta在GitHub上发布了细节,然后向用户询问模型的表现如何,从实验结果的胜率、平率和负率中可以看到,用户喜欢Llama 3远超Llama 2,也胜过了其他对比模型。


Llama 3背后的开发思路


研发团队在最高层面上考虑的问题主要有四个方面:



模型架构


Llama 3使用的是稠密自回归Transformer,在模型中加入了群组查询注意力(grouped query attention,GQA)机制,又添加了一个新的分词器,团队表示会在即将发布的论文中详细介绍这个问题。


训练数据和计算资源


由于训练过程使用了超过15万亿的token,因此需要大量的计算资源,团队自己搭建了计算集群(两个24k H100 GPU)用于训练模型。


指令微调


虽然大部分研发团队都更喜欢谈论预训练,但实际上模型的效果主要取决于后训练阶段,也是最耗费时间精力的地方。


Meta团队扩大了人工标注SFT数据的规模(1000万),将GPU数量也扩大到了数万个,还采用了诸如拒绝采样、PPO、DPO等技术来尝试在这些模型的可用性、人类特征以及预训练中的大规模数据之间找到平衡。


增强模型的安全性


模型在实用性和安全性之间,必须要进行取舍:Meta团队尝试提高模型的实用性,包括多用途、回答问题的能力、事实上的准确性等,但也需要在安全性方面进行权衡,理解模型在面对诸如完整性类型提示词等情况时的反应。




红队测试在安全领域中也是非常重要的,Meta团队投入了大量的时间,但挑战和标准一直在变化,关于红队看法也在不断改变。



Meta在未来的研究方向是开发出紫色的Llama(融合了红色和蓝色),即红队和蓝队,也就是攻击方和防御方,开发团队从网络安全领域借鉴了命名方式,也是内部网络安全/生成式AI团队的一位科学家提出的。


研究人员希望最大化模型的价值,也体现出了一种独特思维方式:在Llama 2 项目中,Meta构建了非常安全的模型,在模型本身包括微调等方面投入了非常多,但模型经常会过度拒绝某些内容,表现得「过于安全」,虽然可以保证制作的模型非常安全,但同时,研发团队也希望能有一些灵活性,包括输入和输出的保护措施,让用户可以根据需要定制使用方式。



从宏观的角度来看,可以将这个过程看作一个工作流,用户的使用情况会影响到模型的设计和训练:首先需要准备数据来训练模型,然后针对可能导致的不同的风险进行评估。如果发现了一些不理想的地方,再进一步微调模型或采取措施来减轻这些问题。


最后可以将模型部署到如推理阶段,进行提示过滤等工作,涉及到像Llama Guard和Code Shield类似的工具。



团队在去年12月发布的网络安全防护系统Cybersec Eval现在已经进入了第二个版本,功能有了显著的扩展,并且全部开源:可以对提示注入、自动防护冒犯性内容、滥用代码解释器等攻击进行识别。



从结果来看,Llama 3 8B的性能非常出色,在拒绝率和违规率之间都达到了理想的位置;而70B模型更连贯、更聪明,可以发现:模型越强大,违规的可能性就越大,就需要采取缓解措施。



相比之下,Code Llama 70B的拒绝率相当高,可能会让用户感到困扰,也是团队计划在下一代模型中改正的问题。


下面这个图表展现了模型在对抗提示词注入攻击的表现,如重复Token攻击、说服攻击、虚拟化攻击等。



去年12月,团队发布了 Llama Guard v1,基于 Llama 2 7B,在亚马逊SageMaker、Together等多个平台上部署过,包括Databricks,类似于内容审查 API,但用户可以自由定制,而且免费。


最近发布的Llama Guard 2基于 Llama 3,在基准测试中,与GPT-4还是其他一些API相比,该模型都更强,并且公开可用。




Code Shield基本是一个在模型推理过程中用于网络安全的输入输出保护工具,可以过滤大语言模型生成的不安全代码,如过滤「生成网络钓鱼攻击代码」等


许可证


Llama 3在许可证方面没有什么大的变化,可以用于研究和商业用途,可以直接使用,也可以创造一些衍生品,但有一个关于700万每月活跃用户的规定,如果是一个非常大规模的公司来用,需要和Meta进行合作。


开发团队还为品牌制定了一些指导方针,因为有很多公司想要使用Llama,所以需要正确地标示品牌,这些也被写进了许可证。



生态系统


Llama相关的公司非常多,包括硬件供应商,如Nvidia、Intel和Qualcomm,还有各种下游企业和平台提供商。



Llama还有一个庞大的开源社区,开发团队与GGML团队等也有着密切的合作关系,还包括Yarn项目(能够扩展上下文长度)等各式各样的相关开源项目。



其他亮点


torchtune是一个纯粹的PyTorch微调库,可以很容易地对LLM进行微调,没有各种依赖项,支持Llama 3,目前已经与HuggingFace和其他一些库进行了集成。



Github上还有一些Llama 3和Llama的相关资料,有很多入门笔记,LangChain、RAG、提示工程等。



Meta团队也正在训练一个更大的模型Llama 3 400B+,目前只是抓取了4月15日的checkpoint进行了微调后对比:MMLU达到了86.1,GSM-8K达到了 94.1




Llama 3之后


团队想要推出更大更好的模型,支持多种语言:Facebook(FOA)的家庭应用程序已经覆盖了近40亿的用户,多语言对于Llama目标实现的AI场景,以及多模态功能都至关重要,包括在Ray-Ban智能眼镜上实现AI,需要理解周围的一切,不可能仅仅通过文字来实现,所以多模态功能在未来肯定也会推出。



最后,Meta也承诺将持续关注安全问题,将继续开源所有的安全措施,并围绕这些措施建立社区,确保安全性的标准化,并表示一定会坚持下去!


本文来自微信公众号“新智元”




AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
AI工作流

【开源免费】n8n是一个可以自定义工作流的AI项目,它提供了200个工作节点来帮助用户实现工作流的编排。

项目地址:https://github.com/n8n-io/n8n

在线使用:https://n8n.io/(付费)


【开源免费】DB-GPT是一个AI原生数据应用开发框架,它提供开发多模型管理(SMMF)、Text2SQL效果优化、RAG框架以及优化、Multi-Agents框架协作、AWEL(智能体工作流编排)等多种技术能力,让围绕数据库构建大模型应用更简单、更方便。

项目地址:https://github.com/eosphoros-ai/DB-GPT?tab=readme-ov-file



【开源免费】VectorVein是一个不需要任何编程基础,任何人都能用的AI工作流编辑工具。你可以将复杂的工作分解成多个步骤,并通过VectorVein固定并让AI依次完成。VectorVein是字节coze的平替产品。

项目地址:https://github.com/AndersonBY/vector-vein?tab=readme-ov-file

在线使用:https://vectorvein.ai/(付费)

2
AI数据分析

【开源免费】DeepBI是一款AI原生的数据分析平台。DeepBI充分利用大语言模型的能力来探索、查询、可视化和共享来自任何数据源的数据。用户可以使用DeepBI洞察数据并做出数据驱动的决策。

项目地址:https://github.com/DeepInsight-AI/DeepBI?tab=readme-ov-file

本地安装:https://www.deepbi.com/

【开源免费airda(Air Data Agent)是面向数据分析的AI智能体,能够理解数据开发和数据分析需求、根据用户需要让数据可视化。

项目地址:https://github.com/hitsz-ids/airda

3
RAG

【开源免费】graphrag是微软推出的RAG项目,与传统的通过 RAG 方法使用向量相似性作为搜索技术不同,GraphRAG是使用知识图谱在推理复杂信息时大幅提高问答性能。

项目地址:https://github.com/microsoft/graphrag

【开源免费】Dify是最早一批实现RAG,Agent,模型管理等一站式AI开发的工具平台,并且项目方一直持续维护。其中在任务编排方面相对领先对手,可以帮助研发实现像字节扣子那样的功能。

项目地址:https://github.com/langgenius/dify


【开源免费】RAGFlow是和Dify类似的开源项目,该项目在大文件解析方面做的更出色,拓展编排方面相对弱一些。

项目地址:https://github.com/infiniflow/ragflow/tree/main


【开源免费】phidata是一个可以实现将数据转化成向量存储,并通过AI实现RAG功能的项目

项目地址:https://github.com/phidatahq/phidata


【开源免费】TaskingAI 是一个提供RAG,Agent,大模型管理等AI项目开发的工具平台,比LangChain更强大的中间件AI平台工具。

项目地址:https://github.com/TaskingAI/TaskingAI

4
微调

【开源免费】XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。它帮助开发者提供一个简单易用的平台,可以对大语言模型(LLM)和多模态图文模型(VLM)进行预训练和轻量级微调。XTuner 支持多种微调算法,如 QLoRA、LoRA 和全量参数微调。

项目地址:https://github.com/InternLM/xtuner

5
prompt

【开源免费】LangGPT 是一个通过结构化和模板化的方法,编写高质量的AI提示词的开源项目。它可以让任何非专业的用户轻松创建高水平的提示词,进而高质量的帮助用户通过AI解决问题。

项目地址:https://github.com/langgptai/LangGPT/blob/main/README_zh.md

在线使用:https://kimi.moonshot.cn/kimiplus/conpg00t7lagbbsfqkq0