ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
心高命薄:印度AI的野心与窘境
7955点击    2024-05-29 10:30

印度的AI狂想与尴尬


在当下AI的热潮中,除了中美两大巨头,还有一个来自东方的大国,试图在人工智能的竞争中抢占先机——是的,它就是我们那个神奇的邻居,印度!


根据最新的Kantar研究报告,印度目前已经有7.24亿人已经用上了AI(未必全是GPT这类大模型)。


在官方层面,对于生成式 AI 产业这事儿,印度也是兴趣极大。


就在去年8月,印度联邦内阁批准了为人工智能、网络安全和数字技能发展投入1490.3亿卢比(约合130.7亿人民币)的计划。



在这样的刺激下,今年1月,印度终于诞生了一家自己的大模型独角兽公司——Krutrim。推出大模型仅一个月后,该公司就以10亿美元的估值融资5000万美元。


然而,印度AI这场盛宴,表面上锣鼓喧天,但一掀开锅盖,里面的“菜色”可就一言难尽了。


先说说“参赛选手”吧,印度在AI企业数量上,跟中国一比,那差距可不是一星半点。


中国这边,不仅有百度、阿里、腾讯这些巨头推出了文心、盘古这样的的大模型,还有一堆短小精悍的团队,比如月之暗面、智谱AI、百川智能和Minimax,也都搞出了拿得出手的自研模型。


而印度呢,大模型相关的公司少得可怜,自研模型更是凤毛麟角。



根据Tracxn和印度人工智能协会的数据,印度在大模型领域的公司数量不到10家,而且这些公司主要忙着做对话AI、智能助手和一些特定行业的应用,基本不碰基础模型的研发。


至于印度目前唯一一个自研模型Krutrim AI ,也同样充满了“咖喱味”。


不仅被曝出来有套壳ChatGPT的嫌疑,并且根据使用者的体验报告,Krutrim AI在使用时,仅允许输入 424 个字符(不包括空格),而且有时在交互过程中还会突然懵逼,连自己是谁都忘了。



实际上,对于印度AI的前景,去年早有人做了预判。


2023 年 6 月,Sam Altman 在印度被问及,如果印度团队花1000万美元搞出大模型,能和OpenAI竞争吗?Altman 回答:没戏。


01 搞不好AI的IT大国


印度,这个在IT圈里响当当的大国,居然在AI方面如此拉胯,属实让人感觉有点意外。


咱们平时老觉得,这AI大模型,说白了就是个高级点的程序,不比那些又要精密机械、又要复杂化工的产品,得一步步爬产业链的阶梯。


按理说,只要掌握了算法加数据,再凑上几个写代码的高手,理论上应该手到擒来才对。而印度人在代码、编程这块,那可是出了名的能干。


且不说当下谷歌、微软的CEO皮查伊、纳德拉都是印度人,就连当初写下名震AI界的那篇《Attention is All You Need》的硅谷八子中的两人,也是印度裔。


同样地,今年震撼AI界的Sora,其核心研发人员中,就包括了一名来自印度的技术天才Aditya Ramesh。



Aditya Ramesh还参与开发了DALL-E


就连特斯拉的自动驾驶负责人Ashok Elluswamy,超级计算机Dojo前负责人Ganesh Venkataramanan也同样来自印度。


按理说,编程、软件方面的人才那么多,搞AI应该很有优势啊,那为何印度在大模型方面如此拉胯呢?


其实,这种“只需要几个聪明人” “万事俱备只差一个程序员”就能搞出来的“低门槛”技术,某种程度上是一种产业上的错觉。


这种错觉就像:“在汽车方面很强大的国家,理应轻松搞出网约车平台”,但现实是,它们就是搞不出来,例如德国、日本虽然是传统汽车强国,但你见过哪个牛气冲天的网约车平台是从他们那儿冒出来的?



在德国,Free Now这样本土的网约车APP,2023年的用户数只是区区350万左右。


其实,无论是网约车,还是大模型,都不是表面上看起来那样,只需要几个聪明的程序员鼓捣几下,就能弄起来的。


因为这背后涉及的东西,表面上看只是一堆程序、代码,但实质上却和一个国家的基础科研、基础设施,市场群体,以及数字化程度有着千丝万缕的联系。


就拿网约车来说,基础科研方面,网约车涉及了GPS、定位算法一类的东西;在基础设施方面需要有覆盖极广的高速网络;在市场端要有大量经常性乘车出行,且熟练上网的人口来支撑。



同样地,AI领域虽然不像某些产业有复杂的供应环节,但依然有着自身的产业链。


分为上中下三游,每一个环节背后都对应着必不可少的科研、市场或数字化程度等因素。


具体来说,AI产业的上游,就是基础研究层面,例如机器学习算法、神经网络架构等等,这方面需要大量跨学科的,基础理论方面的人才;但可悲的是,当今的印度在AI领域,直接在最顶层就被抽掉了理论和科研的人才基础。


02 巨额订单的诱惑


印度在AI基础科研人才方面的缺失,原因主要有二点:


1、IT外包带来的“毒蛋糕”效应;


2、国内拉胯的基建。


这里先说下第一点。


在1990年代那会儿的时候,印度遭遇了严重的外汇危机,赤字占到了其GDP的8.5%左右。为了破局,印度政府不得不进行了一系列市场化的改革。


而改革中最重要的一点,就是鼓励私立教育机构的发展,特别是那些专注于工程、管理、信息技术等应用型学科的学院和大学。


这些以市场为导向的私立学校,很快就瞄准了一个特别香的赛道——IT外包。


这是因为,从成本和收益比来看,印度当时的基础设施、工业能力太差,而且十分缺乏资本,搞制造业属于费力不讨好的行当。


倘若培养制造业的技术人才,毕业后的就业率会十分难看。


相较之下,IT外包这种活,不仅属于轻资本,不需要大动干戈地搞基建、建工厂,并且由于印度人英语好,劳动力又廉价,做起来简直就是一本万利的绝佳买卖。


于是,从90年代起,各种以信息技术为主的应用类专业,就开始在印度的学校中野蛮生长。


而这样的局面,也造就了今天印度科研“重应用,轻理论”的局面。


例如在2021年的一份报告中,印度工程和技术专业的学生,占到了总招生人数的约70%。


但在基础科研方面,根据《自然指数》(Nature Index)的数据,在2022年,中国在自然科学方面的成果约为20050项,美国是21473项,而印度只有1280项。



来源:Nature Index


虽然印度后来也意识到了这种模式的弊端,也想过要改变,但是,两个重要的原因,让印度放弃了“浪子回头”的打算。


首先一个原因,是美国人给得实在太多了。


随着90年代美国的计算机巨头开始全球扩张,印度的IT人才,从大量的大外包订单中获得了巨额报酬。


到了1990年代中期,印度IT从业人员平均年薪大概是8000—12000美元左右,到2000年初期,进一步上升至3万—5万美元,同时期的印度普通农村家庭,年收入仅为300-500美元。而城市低收入阶层家庭的年收入,也仅为600-800美元。



除了巨额的订单诱惑,另一个重要原因,就是印度拉胯的工业、基建,让很多基础科研方面的工作缺乏必要的硬件。


03 捉急的基建


这里一个很反直觉的现象是:AI方面的研究与实验,其实与其他基础科研一样,是十分注重硬件设施的一种研究。可不只是凭编程高手倒腾几下算法那么简单。


要维持大模型的运转,就得有大量的GPU,以及相应的数据中心,而这背后,则必须有充足的电力、能源,以及稳定的、高速的网络基础设施,用来进行数据的传输。


可偏偏印度在这些基础设施方面,表现属实不太行。


一个明显的差距是,2023年,在超大规模数据中心数量上,印度只有大约18个超大规模数据中心,而中国的公开数据是有接近100个。


而超大规模数据中心,正是衡量AI算力的一个重要指标。



这样的差距背后,是支撑和维系数据中心运作的一系列配套设施,包括了电力、网络,冷却系统等等。


在这方面,印度同样被中国甩了好几条街。


首先在能源方面,中国的超大规模数据中心的能耗,在2023年估计达到了约180-200 TWh,而印度只有大约10-15 TWh。


之所以如此,是因为印度在电力方面的基建,实在太捉急了。


根据印度民意调查机构2022年对超过2万人的调查显示,三分之二的家庭表示会突然遭遇停电,三分之一的家庭更是每天固定“小黑两小时”。



这电都不够老百姓家里灯泡亮的,还想养AI这尊电耗子?


除了电力,在网络基建方面,同样是在2023年,中国5G基站总数已超过248万个,覆盖率超过96%,而印度的数量只有30万,覆盖率仅达到了30~40%。


而在更为关键的冷却系统方面,中国在直接液冷、浸没式液冷等先进液冷技术方面处于领先地位(采用率30%)。相比之下,印度大多数数据中心仍采用传统的空气冷却系统,缺乏对液冷技术的广泛应用(采用率10%左右)。



以上种种拉胯的基建,都让印度的计算机科学人才,即使想回国为AI事业效力,也会面临“巧妇难为无米之炊”的困境。


于是,印度聪明的年轻人,最后往往只能含泪打包行李,漂洋过海去美国实现科研梦。


2023年,约6万名印度计算机理论人才选择了海外发展,约占本土计算机理论人数的40%,相较之下,中国的流失率只有15%。


一面是美国抛来的巨额IT外包订单,一面是国内拉胯的基建,两者的相互作用下,印度只能在“科技施工队”的路上越陷越深,难以自拔。


而这种顶层理论人才的差距,直接决定了印度在AI领域所能取得的上限。


04 低数字化社会


如果说,印度在AI产业链上游的问题,主要是基础理论人才的缺失,那么在AI产业链的中游,也就是模型训练方面,印度的困境,主要是难以为大模型的优化和迭代提供足够的数据。


而印度在这方面,有个最大的硬伤:就是社会的整体的数字化程度太低。



虽然印度网民人数听起来是挺唬人的,快9亿大军了,但这里有个重要的区别,就是网民数量并不等于一个国家数字化的程度。


现在经常用AI的朋友,估计可以感受到,目前ChatGPT这类AI,最大的用武之地,往往都是一些信息、数据特别密集的场景。


例如像什么长篇报告总结,专业研报分析,或是帮忙处理一些庞杂的代码之类的。


这样的场景,通常包含了大量的数据、信息,而数据或信息的量多到了一定地步,到了人脑觉得负担太大的时候,人们就会觉得AI很有必要了。


从这个角度上看,数字化程度越高的社会,和AI的契合度就越高。



反之,在一个数字化程度较低的国家里,人们在日常活动中产生不了那么多数据,或是即使产生了数据,这样的数据也是大多是以“线下”的形式存在,那AI就很难有用武之地。


从这个角度来看,所谓的数字化程度,绝不仅仅是“网民数量”这一表面的指标,而是指在日常生活中,人们工作、买东西、学习、看病这些活儿能多大程度在网上解决;企业是否能用数字化的手段提高效率。


虽然现阶段,印度网民的数量是挺多了,但仔细深究起来,他们每天在网上都干了嘛事儿?


根据著名的会计和咨询公司KPMG在印度分布的统计,印度网民目前每天上网的主要活动中,社交网络、即时通讯和视频娱乐等领域最多,占到了总上网时间近90%左右。



但在娱乐化的内容外,其他活动频次就明显低了很多。


如果按使用频率来统计,印度只有56.3%的用户通过网络进行了在线购物,而在中国,这样的比率达到了83%。


除此之外,在网约车平台这些生活服务方面,印度本土的和网约车平台Ola,在2022年全年的订单量约为3.7亿单,而同一时期,中国滴滴出行的订单量则达到了370亿单,是其一百倍以上。



而在企业端,印度企业的互联网普及率仅为49%,而相较之下,中国企业的互联网普及率显著更高,达到了约95%。


这种“低数字化”的现状,从表面上看,主要是落后的基建(5G普及率不足30%)导致的,但从更深层次的原因来看,这和目前印度固有的产业结构,有着莫大关系。


05 分工的重要性


在印度目前的产业结构中,服务业占了GDP的约60%左右。但其中大多是一些低端服务业,例如零售、酒店或餐饮啥的。


农业占了15%—18%,制造业还要略低一些,只有12%。


这种以农业、服务业主导的产业结构,实际上很难承载数字经济所需的复杂产业链和高附加值服务。



农业和很多服务行业,产业链往往很短且较为单一,就像种地、养牲畜,供应链相对较短。


还有那些日常的服务,比如餐馆做饭、商店卖东西、家政打扫卫生,生产链也相对单一,去干就完了呗,较少涉及复杂的上下游产业链整合或增值服务。


说白了,这样的产业,缺乏复杂的数据和信息管理需求。


这么点信息,人脑其实完全处理得过来,用不着AI。


与农业、服务业主导的社会相比,工业社会的一大特征,就是存在大量的分工与协作。


从最初的原材料处理,再到设计新产品、搞研发、组装、测试,最后还要打品牌、做营销、保证售后服务,这一套流程下来,就形成了复杂的产业链。


每增加一个环节,都能创造更多的数据和信息增量。



以新能源车的生产为例,在设计阶段,通过CAD/CAE软件进行车辆设计,以及进行仿真测试时,就会产生大量设计数据和模拟数据。


到了生产环节,生产线上的设备状态、物料流动、生产进度等,同样会产生海量实时数据。


而除了制造环节本身创造的数据流外,由于产业辐射效应,一些工业活动还会给其他看似不相关的行业,带来意外的新的信息和数据。


例如,在金融和保险行业,有基于车辆行驶数据定制的保险费用。


在广告营销行业,为了实现精准营销,企业就得利用大数据分析消费者偏好、社交媒体互动数据等,来优化广告投放。



综上所述,倘若没有工业化,社会就难以产生复杂的分工,没有复杂的分工,人们的生活中也就不会产生大量的数据、信息。


这也是为什么,现在的各个风投机构,都不怎么看好印度AI企业的原因。


去年,印度与大模型相关的AI企业,融资总额约为1.6亿美元。而在中国,仅仅月之暗面一家企业,总融资额就已经达到了30亿美元。


如此巨大的差距背后,除了对印度AI实力的担忧外,一个更重要的原因,就是AI在印度并不真正具备市场规模和潜力。


毕竟,若是放在中国的环境下,即使大模型一时难以在C端打开局面,但至少在B端,由于数字化程度较高,因此在某些定制化的、垂直的场景(如金融、医疗)中,大模型仍然能找到用武之地。



而反观印度,在社会整体低数字化的情况下,大模型除了闲聊和娱乐,还能用来干嘛?


但如果只是闲聊和娱乐,上社交媒体和刷短视频不更香吗?


One More Thing


当前印度在AI方面的窘境,属实表明了:当下的这场AI竞争,从浅了看,只是某一个具体技术的竞争,往深了看,是一个国家总体科研实力的较量,再看得深点,就是不同国家之间,社会发展程度、产业结构、人口素质方面的一个综合比拼。


从总体上看,数字化程度越高的国家,AI落地和普及的效果就越好。


而AI普及度越高的国家,就越能够通过收集用户的反馈数据,形成数据飞轮,进一步对模型进行优化和迭代。



而印度的尴尬之处就在于,明明自己身为一个尚未完成工业化的半农业国家,却在追求AI这样一种数字化时代的产物。


而更讽刺的是,印度越是追求AI,自己从前的“铁饭碗”被端掉的可能性就越大,因为当下的生成式AI,在很多功能上,就是直奔着取代某些高端服务业的目标去的。


例如5月21日的微软开发者大会上,微软不仅发布了搭载GPT-4o的最新版Copilot,并且还在会上演示了“帮助小白编程”的GitHub Copilot Workspace。



这是一款通过聊天实现完成程序编写的软件。这将使任何新手,即使对编程语言几乎没有了解,也能开发自己的软件。


设想一下,如果将来编程、电话客服一类的岗位,全都能被AI取代了,印度之前赖以发家的“IT外包”这条路子,还能走得通吗?


到了那时,工业基础薄弱,IT铁饭碗又被抢走的印度,该如何在AI时代生存,将成为一个巨大的问号。


文章来源于“酷玩实验室”,作者“酷玩实验室


关键词: AI , 人工智能 , 印度AI , Ai企业
AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
免费使用GPT-4o

【免费】ffa.chat是一个完全免费的GPT-4o镜像站点,无需魔法付费,即可无限制使用GPT-4o等多个海外模型产品。

在线使用:https://ffa.chat/