ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
“技术故障”背刺巴菲特,金融大模型到底靠不靠谱?
8706点击    2024-06-17 23:16

一个“技术问题”,导致巴菲特的伯克希尔-哈撒韦公司股价暴跌近100%


想必很多小伙伴已经感受过了这则铺天盖地的消息,所带来的亿点点震撼



而根据事后的消息来看,这个大故障是纽交所的合并报价系统(CTA)在更新软件时出现了问题。


许多专家都对此做了分析,有人认为是CTA软件在进行版本更新时出现了数据一致性问题;也有人提出最大的问题应该是出现在了数据库。


但总而言之,这并非是纽交所今年来第一次出现的故障,而是众多里的一个:



甚至某开源数据库联合创始人Jason直言不讳地表示:


纽交所在CTA软件上相关的IT水平还不及中国的大型金融机构和互联网公司,在中国已经很少会发生这种低级错误了。


即便如此,这也不禁令人产生更大的顾虑和担忧——


传统软件问题尚能引发如此大的问题,那么站在大模型时代当下,AI+金融,是否又能做到准确可信?


正所谓实践是检验真理唯一标准,要回答的这个问题,我们不妨了解一下已经在金融领域“上岗”了的AI大模型。


大模型上岗金融,都在做什么?


诚然AI大模型的发展已然呈现势不可挡的趋势,但在金融领域真正应用的时候,依旧存在一些显著的困难和挑战。


例如数据隐私和安全方面,金融数据往往高度敏感,涉及个人和企业的财务信息,确保数据隐私和安全是首要挑战之一。


并且这些数据具有多源和异构的特点,需要进行有效的整合和处理,才能确保它们的准确性和完整性。


再如模型本身,大模型往往被视为“黑箱”,因为其内部决策过程难以解释;在金融领域,尤其是涉及风险管理和监管合规时,可解释性和决策透明性是非常重要的。


还有在实时性和资源消耗方面,金融市场瞬息万变,需要实时数据处理和决策支持,大模型的推理涉及到大量的矩阵乘法计算,对硬件的矩阵乘法计算能力提出较高要求,计算复杂性可能导致响应时间延迟,不利于实时应用。


加之大模型训练和推理过程需要大量的计算资源和能量消耗,这对企业的成本和环保要求提出了挑战。


而成立于1998年的老牌金融科技公司金证,面对上述固有的重重困难,却有着自己的一套解法。



在金证看来,大模型的优势在于文本及非结构化数据处理能力、人机交互能力、生成能力和逻辑推理能力较强。


而相比小模型而言,大模型也存在明显的劣势,例如大模型“幻觉”问题(即大模型答非所问),大模型的部署算力要求高造成算力资源浪费,部署成本高等问题。


因此,金证的解法就是——通过组合式AI,即大模型+小模型+工具,以此来支撑各个业务场景AI需求。


大模型方面,包含金证去年年底推出的K-GPT以及业内众多顶流的大模型,在特定的金融任务中发挥大模型的特长。


小模型则是指诸如OCR、NLP、人脸识别、文字识别、财务分析等传统模型,可以细分任务做到快准狠地处理。


至于工具,则是指地图、天气、CRM、邮件、OA等。



一言蔽之,在某个金融领域任务中,这种模式可以让大模型、小模型和工具做到“专业的人干专业事”,尤其能极大地提高效率。


值得一提的是,相比于通用大模型,金证的K-GPT在数据查询的准确性方面表现更佳,能够更好地理解金融术语,提供专业且数据扎实的回复。



据了解,K-GPT 还支持查看引用的知识源,并具备与实时数据和模块化集成的能力,可以调取实时数据和组件。


依托庞大的金融知识库,K-GPT专为金融场景服务,其核心优势在于对金融的深入理解、数据准确、可验证性以及支持调用Agent功能。


从效果上不难看出,金证已然让大模型在金融领域中合格地上岗,那么针对成本和资源上的痛点,金证又是如何解决的呢?


背后是高带宽内存(HBM)的至强® 在发力


金证K-GPT方案中,还有一点比较特别:与英特尔合作,采用了基于CPU的大模型推理方案。


据了解,他们主要是看中的是英特尔® 至强® CPU Max系列处理器


这是英特尔唯一一款基于x86架构并采用高带宽内存(HBM)的CPU系列,采用了片上HBM设计,内存带宽高达4TB/s。和传统DDR5内存相比,HBM具有更多的访存通道和更长的读取位宽,理论带宽可达DDR5的4倍之多。


要知道,大模型推理涉及大量的权重数据读取,对硬件平台的内存访问带宽提出了很高的要求。


至强® CPU Max具有64GB HBM,每个内核可以分摊到超过1GB的内存,对于包括大模型推理任务在内的绝大多数计算任务,HBM都可以容纳全部的权重数据。



内存带宽还不是金证选择这款CPU的全部理由。


英特尔® 至强® CPU Max系列还内置了英特尔® 高级矩阵扩展 (英特尔® AMX)引擎,大幅提升了大规模矩阵乘法运算性能。


金证K-GPT基于Transformer架构,其核心特点包括多头注意力机制和前馈神经网络层,这其中都包含大量矩阵运算,而英特尔® AMX通过1024位TMUL指令和8个独立的矩阵计算单元,可以每时钟周期执行8次独立的矩阵乘累加操作,为这些运算提供强大的加速能力。


如此一来,大模型推理的效果如何呢?


只用单颗CPU的情况下,推理130亿参数大模型,首个词元生成时间就能压到1秒左右,模型推理TPS超过10 tokens/s,用户提问后约2秒内就能得到响应。


别忘了遇到负载高峰等情况,还可以同时启用2颗CPU,性能还能提升将近一倍,可以说足以满足金融场景的大部分应用需求了。



除了硬件层面的突破,英特尔还提供了经过优化的软件工具来挖掘硬件潜力。


比如广泛使用的OpenVINO™工具套件,就被用来专门调优加速模型的Embedding处理进行。


金融场景涉及大量专业文档的输入任务,Emedding正是把文本从离散变量转变为连续向量的过程,好让AI能够理解。


经过OpenVINO™ 工具套件优化后,K-GPT大模型的批量Embedding性能提升到3倍之多。


图注:OpenVINO™ 工具套件优化前后 Embedding 性能比较


再比如金证与K-GPT配合使用的开源向量数据库Faiss,英特尔也提供了优化版本,以提升在至强® CPU Max上的模型推理性能。


在大规模向量相似性检索任务中,经英特尔优化过的版本性能可提升至4倍左右。


图注:英特尔优化版 Faiss 与原始 Faiss 性能对比(越高越好)


除了性能方面之外,金证选择英特尔® 至强® CPU Max系列作为算力底座还带来其他方面的优势:


首先是灵活性。由于与主流的 x86 架构完全兼容,金证可以继续使用原有的机器,灵活搭配适合自身业务的配置。而且 CPU 能同时应对推理和通用计算,可根据负载情况随时调配资源。


第二是总拥有成本 (TCO)。从长远来看,CPU路线能以更低的部署和维护开销,实现与专用加速器相媲美的性能。这对于需要控制预算的金融机构来说至关重要。


综合看下来,英特尔® 至强® CPU Max系列处理器在硬件能力、软件优化、生态适配、总拥有成本优势等方面都与金融场景非常契合,不失为业界大模型落地的一种新思路。


如何评价?


随着数字化转型的不断深入,大模型为金融行业带来的机遇与挑战并存。


越来越多的金融机构开始探索如何将AIGC技术与实际业务相结合,在提质增效的同时控制成本。但总的来说,大模型在金融行业的应用仍处于初步探索阶段。


金证携手英特尔打造的这套大模型推理方案,可谓是应用层、模型层、算力层的深度融合,为业界树立了标杆。


不久前举办的金证科技节,就吸引了众多金融机构前来”取经”。


作为连接金融与科技的重要平台,金证科技节吸引了众多来自银行、证券、保险等领域的金融行业玩家参与,共同探讨 AI 技术在金融领域的应用前景与优质实践。


可以预见,在英特尔的算力加持下,金证将在大模型技术上不断突破,助力更多金融机构实现数字化转型,为用户带来更智能、高效的服务体验。


为了科普CPU在AI推理新时代的玩法,量子位开设了《最“in”AI》专栏,将从技术科普、行业案例、实战优化等多个角度全面解读。


我们希望通过这个专栏,让更多的人了解CPU在AI推理加速,甚至是整个AI平台或全流程加速上的实践成果,重点就是如何更好地利用CPU来提升大模型应用的性能和效率。


文章来源于:微信公众号量子位,作者:金磊


AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
智能体

【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。

项目地址:https://github.com/Significant-Gravitas/AutoGPT


【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。

项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md

2
知识库

【开源免费】FASTGPT是基于LLM的知识库开源项目,提供开箱即用的数据处理、模型调用等能力。整体功能和“Dify”“RAGFlow”项目类似。很多接入微信,飞书的AI项目都基于该项目二次开发。

项目地址:https://github.com/labring/FastGPT

3
RAG

【开源免费】graphrag是微软推出的RAG项目,与传统的通过 RAG 方法使用向量相似性作为搜索技术不同,GraphRAG是使用知识图谱在推理复杂信息时大幅提高问答性能。

项目地址:https://github.com/microsoft/graphrag

【开源免费】Dify是最早一批实现RAG,Agent,模型管理等一站式AI开发的工具平台,并且项目方一直持续维护。其中在任务编排方面相对领先对手,可以帮助研发实现像字节扣子那样的功能。

项目地址:https://github.com/langgenius/dify


【开源免费】RAGFlow是和Dify类似的开源项目,该项目在大文件解析方面做的更出色,拓展编排方面相对弱一些。

项目地址:https://github.com/infiniflow/ragflow/tree/main


【开源免费】phidata是一个可以实现将数据转化成向量存储,并通过AI实现RAG功能的项目

项目地址:https://github.com/phidatahq/phidata


【开源免费】TaskingAI 是一个提供RAG,Agent,大模型管理等AI项目开发的工具平台,比LangChain更强大的中间件AI平台工具。

项目地址:https://github.com/TaskingAI/TaskingAI