ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
产品复盘:从「文风测试」到「 OC 分析」,AI产品一波流也有春天
7966点击    2024-06-29 14:00

过去 2 周,在 AI 技术圈极少有人知晓的情况下,一个叫做「文风测试」的小网站已经红透了半个社交网络。



文风测试是一个非常简单的网站,你复制你写的文字进去,然后它告诉你,你的写作风格接近哪些作家。



大概 2 周前,我在小红书上发现了有人在介绍文风测试,然后迅速被其创意和风格吸引,但是当我试图打开网站的时候却发现,这个网站打不开,页面显示 502,502 错误往往代表网站不堪重负,也从另一个侧面提示了我,这个网站可能正在承接大量的流量。


我的兴趣更大了,反复刷新依然打不开之后,于是我尝试直接通过 Google 缓存的网页来打开,并终于看到了网站的样子,通过 Google 缓存的网页,我找到了开发者的联系方式,并有点冒昧的直接添加了对方,此时已经是深夜十一点。


和开发者之一的 Ankie 聊了几句之后,我们就直接通了电话,后来另一位全栈工程师也加入了,我们聊了大约 1 个小时,一方面我为这个「全女生」团队的创意,纯粹和执行力感到敬佩,另一方面则对她们互联网产品的基础技术能力之低感到难以置信,但这并不妨碍这个小产品在接下来的好几天里成为多个社交平台的「AI顶流」。



文风测试共有三位主创,其中一位负责模型和算法,另一位则负责前后端全栈,此外还有一位设计师。全栈工程师的专业其实是政治经济,出于兴趣刚刚开始自学网页开发,因此,在网页里能看到很多「上古元素」,例如直接 htlm css js 一把梭,没有任何统计代码,没有前后端分离等等,只需要右键查看网页元素,就能梦回 20 年前。


负责算法和模型的 Ankie 还在上学,学习的正是 AI 方向,因此,和很多人想的不一样,文风测试并没有使用任何大模型,而是 Ankie自己训练的一个小模型,模型小到可以在 CPU 上运行,这其实才是对的——在大模型淹没一起的今天,我们似乎已经忘记了,其实很多场景根本没必要用大模型。事实上,用大模型来做风格鉴定这件事,反而效果极差。



另一个 Ankie 决定使用自己的小模型的原因是,她看到之前有人做大模型哄对象的应用,然后其开发者说亏了几千美金,这人是谁我就不提了总之 Ankie 很好的吸取了经验教训,使得文风测试能够一直以极低的成本运行。



除了在技术上提供一些小帮助外,我还试图积极的帮 Ankie 在如何赚钱或者商业化上出谋划策,但我很快被她们的纯粹打动了,她们真的不想获得什么商业上的回报,和哄哄类似,这是一个完全由兴趣驱动,并只为兴趣服务的小工具



过去 2 周,总共有近百万人使用了文风测试来测试他们自己的文风(考虑到在我告诉她们得加 Google analytics 之前,流量都甚至没统计过,实际人数可能更多),其背后的模型则依靠 4 台 CPU 服务器来提供服务,在极致的性能压榨下,总共的成本不到 500 元。


在和 Ankie 的交流中,我了解到使用文风测试的绝大部分是二次元圈子里的用户,并因此和许多用户产生沟通,聊着聊着,我就聊出了一个小需求:oc 分析。


不在二次元圈子里,可能完全不知道 oc 是什么意思,oc 本意是自创角色 (Original Character),许多二次元心中都会在心里创建一个理想的角色,这个角色可能脱胎于看过的动漫作品,也可能是完全自己「捏」的,角色会有自己的设定,偏好,外貌,经历的事件,这一切都是用户设定的。


我知道对于像我这样的「大人」来说,oc 听上去就像是某一种过家家,但其实我从来没有忘记二十年前的那个下午,我和邻居小孩走在放学的路上,边走边聊,我自称旋风战士,他管自己叫墩墩侠,我们时而在城楼并肩作战,时而从云端跃入一段异世界的红尘往事,夕阳照在我们身上,是两个小学生的屁颠颠的背影。



oc 对很多年纪不大的喜欢二次元的人们来说,是一个自然甚至必然的爱好,因为这群人就是有许多想象力,许多创造力,而这个世界又不那么能满足。


当 oc 被创建出来之后,人们自然希望能够和其发生更多连接,因此,聊天,将其转成图片,都成了「搞oc」的方式,也因此诞生了许多相关的产品。


我的 idea 很简单,类似于文风测试,用户可以输入自己的 oc 设定,然后看到最接近的动漫角色是谁。



这个产品简单到不可思议,如果说哄哄模拟器还有一点开发量的话,这样一个简单的测试小工具,几乎就是一个两三个小时能做完的事情,所以我在想到 idea 后,迅速花了2个小时的午休时间进行开发,然后在下午就上线了。



上线之后,我和 Ankie 聊了一下,她觉得很有意思,于是帮我转给了她的朋友以及文风测试的一些用户,没想到 oc 成分测试迅速在二次元群体中传播开了,相关的帖子在2小时内得到了 3000 个转发,而从我这里,最直观的感受就是看到流量飞速上涨。



从晚上10点开始,流量每隔半个小时就翻一倍,到凌晨 1 点,网站的即时在线人数已经突破了 1.5 万人,我不知道这群人是不是不睡觉,但是我此时已经困的不行,最后看了一眼数据就倒床入睡了。


第二天流量达到高峰,单日 20 万人来此一游,随后的一周,流量逐渐降低,并回落到 1万左右的 DAU


oc 成分测试既是一个小玩具,又给我们团队的产品进行精准的导流,这部分效果好到不可思议,过去一周,oc 成分测试大约有 30 万人访问,给我们带来了数万 app 下载的转化。



当然,和哄哄模拟器一样,oc 测试和文风测试都有自己的生命周期,称之为「一波流」也并无不可,但在这两个小产品上,我觉得结果都很圆满,文风测试用小模型反过来替代大模型,从而实现成本的绝对优势,主创团队「写论文,练代码」的愿望也超出预期的达成了。oc成分测试是我关于流量的一次实验,它验证了我们团队对一个新的用户群体的理解,从更实际的角度,它也实现了极高效的结果转化——算上大模型的成本,每个 app 安装成本也仅为 2 毛钱。


过去半年,不断有比较单一的 AI 内容产品上线,但在我看来,它们更像是某种模型厂的 KPI 产物——没有从真实的需求出发(哪怕这个需求是有趣),也没有真正的给到目标受众,大多数时候,这些产品只会在几个 AI 交流群中流转。


这种现象过多,加之哄哄模拟器其实也没有什么确定的结果(除了开了一个好头之外),导致我一度对于这种「一波流」充满怀疑。直到现在,我想我终于看到了一些新的,不一样的可能性。


我依稀感觉到,AI 提供核心能力的内容(产品),哪怕是单一形态或一波流,在非 AI 或互联网圈里成为爆款,也是足以完成很多目标的,而这可能是有方法论,可以被复现的。


对踌躇满志的2C AI 创业者来说,这或许不是最终目的本身,但路能行至此,我觉得也算是有所收获。


文章来源于“Founder Park”