ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
揭秘:阶跃星辰万亿MoE+多模态大模型矩阵亮相
5901点击    2024-07-05 00:08

在 2024 年世界人工智能大会的现场,很多人在一个展台前排队,只为让 AI 大模型给自己在天庭「安排」一个差事。



具体流程是这样的:首先, AI 会管你要一张个人照片,并参考《大闹天宫》画风生成你在仙界的形象照。接下来,它会引导你进入一个交互式的剧情选择和交谈环节(其实是 AI 大模型自己编的剧情),然后根据你的选择和回答评估出你的 MBTI 人格类型,并根据这个类型为你在天庭「安排」一个差事。 


当然,除了现场排队,你还可以在线体验(扫描下方二维码即可)。

 


这是大模型创业公司阶跃星辰与上影合作的 AI 互动体验《AI + 大闹天宫》。但其实,这只是开胃菜,目的是让大众直观地感受大模型的魅力所在。在今年 WAIC 期间,他们还结结实实地亮了一些大招,包括万亿参数 MoE 大模型 ——Step-2 正式版、千亿参数的多模态大模型 ——Step-1.5V,以及图像生成大模型 Step-1X


Step-2 这个模型最早是在 3 月份和阶跃星辰公司一起亮相的,当时还是预览版。如今,它进化出了全面逼近 GPT-4 体感的数理逻辑、编程、中文知识、英文知识、指令跟随等能力。


有了这个模型做基础,阶跃星辰进一步训练出了多模态大模型 Step-1.5V。它不仅拥有强大的感知和视频理解能力,还能够根据图像内容进行各类高级推理,如解答数学题、编写代码、创作诗歌等。


《AI + 大闹天宫》的图像生成则是由另一个模型 ——Step-1X 来完成的。从生成结果中,我们能感觉到这个模型针对中国元素所做的深度优化。此外,它还有良好的语义对齐和指令遵循能力。


在几家知名的国内大模型公司中,阶跃星辰几乎是亮相最晚的一个,但却抢先形成了「万亿参数 MoE 大模型 + 多模态大模型」的大模型矩阵,站稳了「大模型创业公司第一梯队」。这背后离不开他们对 Scaling Law 的坚持以及与之匹配的技术、资源实力。在这篇文章中,我们将详细介绍阶跃星辰此次公布的几款模型,以及其背后体现的技术思路。


从头训练的 

Step-2 万亿参数大模型


当参数量突破万亿,模型的数学、编程等涉及推理的能力都会显著提升。就像当初,我们用过 GPT-4 就再也不想回头用 GPT-3.5 一样,Step-2 也完成了这种跳变。相比之前的千亿级别模型,它能解决的数理逻辑、编程问题明显比之前更难了。一些基准评测的量化结果也说明了这一点。



此外,它的中英文能力和指令跟随能力也实现了明显提升。


Step-2 之所以表现如此优异,一方面得益于它巨大的参数量,另一方面也得益于它的训练方法。


我们知道,训练 MoE 模型主要有两种方式。一种是 upcycle,即通过重新利用训练过程的中间结果或已经训练好的模型,以更高效和更经济的方式进一步提升模型性能。这种训练方式算力需求低,训练效率高,但训练出的模型往往上限要低一些。比如,在训练 MoE 模型时,如果多个专家模型是通过拷贝和微调相同的基础模型得到的,那么这些专家模型之间可能会存在高度相似性,这种同质化会限制 MoE 模型的性能提升空间。


考虑到这些局限,阶跃星辰选择了另一种方式 —— 完全自主研发,从头开始训练。这种方式虽然训练难度高、算力消耗大,但能获得更高的模型上限。


具体来说,他们首先在 MoE 架构设计方面做了一些创新,包括部分专家共享参数、异构化专家设计等。前者可以确保某些通用能力在多个专家之间共享,但同时每个专家仍然保留其独特性。后者通过设计不同类型的专家模型,使每个专家在特定任务上都有独特的优势,从而增加模型的多样性和整体性能。


基于这些创新,Step-2 不仅总参数量达到了万亿级别,每次训练或推理所激活的参数量也超过了市面上大部分的密集模型。


此外,从头训练这样一个万亿参数模型对于系统团队也是很大的考验。好在,阶跃星辰系统团队拥有丰富的系统建设与管理实践经验,这让他们在训练过程中顺利突破了 6D 并行、极致显存管理、完全自动化运维等关键技术,成功完成了 Step-2 的训练。


站在 Step-2 肩膀上的 

Step-1.5V 多模态大模型


三个月前,阶跃星辰发布了 Step-1V 多模态大模型。最近,随着 Step-2 正式版的亮相,这个多模态大模型也升级到了 1.5 版本。


Step-1.5V 主要侧重多模态理解能力。与之前的版本相比,它的感知能力大大提升,能够理解复杂图表、流程图,准确感知物理空间复杂的几何位置,还能处理高分辨率和极限长宽比的图像。



此外,它还能理解视频,包括视频中的物体、人物、环境以及整体氛围和人物情绪。


前面提到,在 Step-1.5V 的诞生过程中,Step-2 功不可没。这指的是,在 Step-1.5V 进行 RLHF(基于人类反馈的强化学习)训练过程中,Step-2 是作为监督模型来用的,这相当于 Step-1.5V 有了一个万亿参数的模型当老师。在这个老师的指导下,Step-1.5V 的推理能力大大提升,能够根据图像内容进行各类高级推理任务,如解答数学题、编写代码、创作诗歌等。这也是 OpenAI GPT-4o 最近所展示的能力之一,这项能力让外界对于它的应用前景充满了期待。


多模态的生成能力主要体现在 Step-1X 这个新模型上。与一些同类模型相比,它有更好的语义对齐和指令跟随能力,同时针对中国元素做了深度优化,更适合国人的审美风格。


基于该模型打造的《大闹天宫》AI 互动体验的背后融合了图像理解、风格迁移、图像生成、剧情创作等多种能力,丰富立体地展现了阶跃星辰行业领先的多模态水平。例如,在初始角色生成时,系统首先会判断用户上传的照片是否符合「捏脸」要求,然后用非常《大闹天宫》的语言风格灵活给予反馈。这里就体现了模型的图片理解能力和大语言模型的能力。在大模型技术加持下,这款游戏就让玩家获得了和传统线上 H5 游戏完全不同的互动体验。因为所有的互动问题、用户形象、分析结果都是模型实时学习特征后生成的,真正做到了千人千面和无限剧情的可能。



这些优异的表现离不开阶跃星辰全链路自研的 DiT 模型架构(OpenAI 的 Sora 也是 DiT 架构)。为了让更多人用上该模型,阶跃星辰给 Step-1X 设计了 600M、2B、8B 三种不同的参数量,以满足不同算力场景的需求。


在 3 月份的亮相活动中,阶跃星辰创始人姜大昕曾明确指出,他认为大模型的演进会经历三个阶段: 


  • 在第一个阶段,语言、视觉、声音等各个模态是独立发展的,每个模态的模型专注于学习和表征其特定模态的特点。
  • 在第二个阶段,不同的模态开始走向融合。但这个融合并不彻底,理解和生成任务依然是分开的,这造成模型理解能力强但生成能力弱,或者反之。
  • 在第三个阶段,生成和理解被统一在一个模型里,然后去和机器人充分结合,形成具身智能。接下来,具身智能去主动探索物理世界,然后逐步演变成世界模型,进而实现 AGI。


这也是姜大昕等人从创业之初就在坚持的路线。在这条路上,「万亿参数」和「多模融合」缺一不可,Step-2 和 Step-1.5V、Step-1X 都是他们在这条路上达成的节点。


而且,这些节点是一环套一环的。以 OpenAI 为例,他们在年初发布的视频生成模型 Sora 使用了 OpenAI 的内部工具(很可能是 GPT-4V)进行标注;而 GPT-4V 又是以 GPT-4 相关技术为基础训练出来的。就目前来看,单模态模型的强大能力会为多模态打下基础;多模态的理解又会为生成打下基础。靠着这样的模型矩阵,OpenAI 实现了左脚踩右脚。而阶跃星辰正在国内印证这条路线。


我们期待这家公司给国内大模型领域带来更多惊喜。


文章来源于:微信公众号机器之心


关键词: MoE+ , 多模态模型 , 阶跃星辰 , AI
AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
免费使用GPT-4o

【免费】ffa.chat是一个完全免费的GPT-4o镜像站点,无需魔法付费,即可无限制使用GPT-4o等多个海外模型产品。

在线使用:https://ffa.chat/

2
微调

【开源免费】XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。它帮助开发者提供一个简单易用的平台,可以对大语言模型(LLM)和多模态图文模型(VLM)进行预训练和轻量级微调。XTuner 支持多种微调算法,如 QLoRA、LoRA 和全量参数微调。

项目地址:https://github.com/InternLM/xtuner