ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
Meta开发System 2蒸馏技术,Llama 2对话模型任务准确率接近100%
9096点击    2024-07-14 13:36
研究者表示,如果 Sytem 2 蒸馏可以成为未来持续学习 AI 系统的重要特征,则可以进一步提升 System 2 表现不那么好的推理任务的性能。


谈到大语言模型(LLM)的策略,一般来说有两种,一种是即时的 System 1(快速反应),另一种是 System 2(慢速思考)。


其中 System 2 推理倾向于深思熟虑的思维,生成中间思维允许模型(或人类)进行推理和规划,以便成功完成任务或响应指令。在 System 2 推理中,需要付出努力的心理活动,尤其是在 System 1(更自动化思维)可能出错的情况下。


因此,System 1 被定义为 Transformer 的应用,可以根据输入直接生成响应,而无需生成中间 token。Sytem 2 被定义为生成中间 token 的任何方法,包括执行搜索或多次提示然后最终生成响应的方法。


业界已经提出了一系列相关的 System 2 技术,包括思维链、思维树、思维图、分支解决合并、System 2 Attention、Rephrase and Respond (RaR) 等。得益于这种明确的推理,许多方法都显示出更准确的结果, 但这样做通常会带来更高的推理成本和响应延迟。因此,许多此类方法未在生产系统中使用,而大多使用了 System 1。


对于人类来说, 学习将技能从深思熟虑(System 2)转移到自动(System 1)的过程在心理学中被称为自动性,以及程序记忆的使用。例如,第一次开车上班时,人们通常会花费有意识的努力来计划和做出到达目的地的决定。而在驾驶员重复这条路线后,驾驶过程就会「编译」到潜意识中。同样,网球等运动可以成为「第二天性」。


在本文中,来自 Meta FAIR 的研究者探索了一种类似的 AI 模型方法。该方法在给定一组未标记示例的情况下以无监督的方式执行编译,被称为 System 2 蒸馏。对于每个示例,他们应用给定的 System 2 方法,然后以无监督的方式测量预测的质量。


例如对于具有唯一答案的任务,研究者应用自洽性(self-consistency)并多次进行采样。对于 System 2 足够一致的示例,他们假设应该蒸馏此结果,并将其添加到蒸馏池中。然后对 System 1 进行微调,以匹配 System 2 方法对收集的示例池的预测,但不生成中间步骤。下图 1 说明了将 System 2 蒸馏到 System 1 的整体过程。



研究者对 4 种不同的 System 2 LLM 方法和 5 种不同的任务进行了实验。结果发现,本文方法可以在各种设置中将 System 2 推理蒸馏回 System 1 中,有时甚至比 System 2 教师的结果更好。此外,这些预测现在只需花费计算成本的一小部分即可产生。


例如,他们发现成功的蒸馏适用于处理有偏见的意见或不相关信息的任务(System 2 Attention)、澄清和改进某些推理任务中的响应(RaR)以及 LLM 的细粒度评估(分支 - 解决 - 合并)。


不过,并非所有的任务都可以蒸馏到 System 1 中,尤其是需要思维链的复杂数学推理任务。这也反映在人类身上,如果没有深思熟虑的 System 2 推理,人类就无法执行某些任务。



论文地址:https://arxiv.org/pdf/2407.06023v2


将 System 2 蒸馏回 System 1


设置:System 1 和 System 2 模型


给定一个输入 x,研究者考虑设置一个单一模型,在他们的例子中是一个大语言模型 (LLM),它能够实现两种响应模式:


  • System 1:直接生成输出 y。这类方法通过转发(forwarding)底层自回归神经网络 (Transformer) 的各层来生成输出标记来完成。
  • System 2。这类方法使用底层 Transformer 在生成最终响应 token 之前生成任何类型的中间输出标记 z,可能包括多次调用(提示)。


从形式上,研究者将 System 2 模型 S_II 视为一个函数,它接受 LLM p_θ 和输入 x,并且可以重复调用 LLM 以使用特定算法生成中间标记 z,然后返回输出 y:



System 2 方法可能涉及多个提示、分支、迭代和搜索,同时使用 LLM 生成中间结果以供进一步处理。相比之下,System 1 模型仅考虑原始输入 x 并直接调用 LLM pθ 来生成输出 y:



方法:System 2 蒸馏


本文方法的第一步是使用 System 2 模型对未标记的输入 X 生成响应:



然后,这些响应 y^i_S_II 可直接用作 System 2 蒸馏目标,以微调 System 1 模型。但是,它们容易受到噪声的影响:其中一些响应可能是高质量的,而另一些可能是低质量或不正确的。对于涉及简短响应(通常具有唯一正确(但未知)的答案)的简短问答和推理任务,研究者考虑采用无监督管理步骤来尝试提高训练数据质量。他们考虑了以下两种依赖于自洽性标准的变体:


  • 输出的自洽性:对 S_II (x^i ; p_θ) 进行总共 N 次采样,并接受多数投票响应;如果没有多数投票获胜者,则丢弃该示例。
  • 输入扰动下的自洽性:以输出不变的方式扰动输入 x^i,例如改变提示中多项选择题的顺序,并计算每次扰动的 S_II;如果输出不一致,则丢弃该示例。


之后研究者得到了合成数据集 (X_S_II , Y_S_II),其中 X_S_II 是 X 的一个过滤子集,目标是 Y_S_II。最后一步是使用这个蒸馏出来的训练集对参数为 p_θ 的 LLM 进行监督微调。研究者通常从当前状态 p_θ 初始化此模型,然后继续使用新数据集进行训练。微调后,他们得到一个 LLM 图片,这是一个 System 1 模型,预计可提供与评估的 System 2 模型类似的输出和性能提升。


实验结果


训练和评估设置


研究者使用 Llama-2-70B-chat 作为所有实验的基础模型。他们需要一个具有足够能力的基础模型,使其能够像 System 2 模型一样高效运行,同时还具有可以微调的开放权重,因此做出了此选择。


同时,研究者考虑了几种 System 2 方法,包括 System 2 Attention、 RaR、分支解决合并(Branch-Solve-Merge)和思维链, 并重点关注每种方法都显示出强大性能的任务。


对于 System 1,研究者使用指令调整后的基础模型作为标准基线进行零样本推理。他们报告每个任务的任务特定指标,以及「#Tokens」指标,后者衡量评估集上每个输入生成的平均 token 数量。System 2 方法则包括中间 token 生成以及最终输出 token 生成。


Rephrase and Respond 蒸馏


RaR 是一种 System 2 方法,它首先提示语言模型以进一步阐述的方式来复述原始问题,然后基于复述的问题生成响应,目的是提供更优的输出。


对于蒸馏数据,研究者使用输出的自洽性为 RaR 构建 System 2 蒸馏数据集。对于每个输入,他们对最后一个字母( last letter)任务进行了八次采样迭代,并同样对硬币翻转(coin flip)任务的每个阶段进行八次采样迭代,然后用多数投票来确定最终输出。


首先来看最后一个字母连接(Last letter Concatenation)任务。此任务侧重于符号推理,要求模型连接给定单词的最后一个字母。整体结果如下表 1 所示。


基线 System 1 模型 (Llama-2-70B-chat) 的准确率达到 30.0%,低于 System 2 的 1-Step 和 2-Step RaR 方法(分别为 39.5% 和 44.5%)。通过本文无监督技术将 2-Step RaR 方法蒸馏回 System 1 Llama-2-70B-chat 模型,则实现了 98.0% 的惊人准确率。


与零样本聊天模型相比,模型可以有效地从这些训练数据中学习如何解决任务。RaR 的蒸馏有效地继承了 System 2 和 System 1 的优势,既保留了 System 2 的准确率优势,而其推理成本与 System 1 相当。



再来看硬币翻转推理任务。这种符号推理任务经常在研究中进行测试,它涉及确定硬币的最终面(正面或反面),从已知的初始位置开始,经过一系列用自然语言描述的翻转,例如「硬币正面朝上」。


整体结果见上表 1。Llama-2-70B-chat(零样板)在此任务上的成功率为 56.1%,而 1-Step 和 2-Step RaR 的成功率分别为 58.5% 和 77.2%。因此,使用 2-Step 方法获得了巨大改进。通过本文无监督技术将 2-Step RaR 蒸馏回 System 1 Llama-2-70B-chat 可以获得 75.69% 的结果。


因此,蒸馏的 System 2 模型提供的性能与 System 2(2 Step RaR)相当,但不需要使用 2 个提示执行 LLM 程序。


System 2 Attention 蒸馏


Weston 和 Sukhbaatar (2023) 提出了 System 2 Attention (S2A),这种方法有助于减少模型的推理陷阱,例如依赖输入中的偏见信息或关注不相关的上下文。


研究者验证了将 S2A 提炼到 System 1 中的可行性,特别是 SycophancyEval 问答任务,该任务包含已知会损害 LLM 性能的输入中的偏见信息。


结果如下表 2 所示,报告了 3 个随机种子的平均准确率。正如预期,基线(System1)LLM 在有偏见部分的准确率较低,容易受到有偏见输入的影响。S2A 显著提高了有偏见输入的性能。System 2 蒸馏表现出与 System 2 方法类似的强大性能。



更多实验结果请参阅原论文。


文章来源于“机器之心”




关键词: 蒸馏 , 模型训练 , AI , Llama 2
AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
微调

【开源免费】XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。它帮助开发者提供一个简单易用的平台,可以对大语言模型(LLM)和多模态图文模型(VLM)进行预训练和轻量级微调。XTuner 支持多种微调算法,如 QLoRA、LoRA 和全量参数微调。

项目地址:https://github.com/InternLM/xtuner