# 热门搜索 #
搜索
英伟达最新技术分享:手把手教你用Llama 3.1合成数据改进模型!附代码
9081点击    2024-07-29 20:20

Epoch AI上个月刚刚发文预言「数据墙」迫近,结果英伟达转头就甩出了340B开源巨兽Nemotron


真实数据稀缺可能不再是问题了,Nemotron 9T token的预训练预料中,98%都是合成数据。


也许你还对合成数据存在顾虑,或者不知道如何应用LLM驱动数据生成。或许,英伟达的这篇博客可以提供答案。



原文地址:https://developer.nvidia.com/blog/creating-synthetic-data-using-llama-3-1-405b/?linkId=100000275486093


首先我们需要理解,用LLM合成数据的本质究竟是什么?


合成数据并不是「从无到有」地创造新信息,而是对现有信息进行转换,生成不同的变体。


实际上,合成数据在AI领域的应用已经有十多年的历程,比如物体检测或分类系统中曾经的数据增强技术。



那么,LLM带来了什么新变化呢?


从「需求端」来看,由于模型需要大量训练语料,合成数据的动机被大大增强。


而在「供给端」,生成式语言模型也为合成数据技术带来了质的改变。


用合成数据微调基座模型,可以更好地应用于实际场景。例如,在金融领域改进风险评估、在零售领域优化供应链、在电信领域提升客户服务,以及在医疗领域改善患者护理等等。


尤其是405B开源巨兽Llama 3.1最近正式上线,既可用于批处理和在线推理,也可以作为基座模型,进行特定领域的专门预训练或微调。


尤其是考虑到Llama 3.1有如此大的参数规模,加上丰富的15.6T token训练数据,非常适合用于数据生成。


这篇博客文章将介绍几个合成数据的生成与应用案例,并就其中一个进行深入探讨。


  • 合成数据的生成是推动GenAI在特定领域应用的关键工作流程

  • 将最新的Llama 3.1与英伟达Nemotron-4 340B奖励模型配合使用,非常适用于生成合成数据

  • 要让LLM生成基于最新信息的有根据的响应,构建RAG流程十分重要,而且模型响应的准确性取决于流程的质量。

LLM合成数据如何应用于GenAI


改进语言模型


要通过合成数据来微调模型,大致有两种方法——知识蒸馏(knowledge distillation)和自我改进(self-improvement)。


知识蒸馏是将大模型的能力转移到较小模型的过程,但不是简单地在同一个数据集上训练两个模型,因为较小模型很难学习到底层数据的准确表征。


在这种情况下,我们可以先让大模型完成任务,再使用这些数据指导小模型进行。


自我改进则是让同一个模型评判自己的推理过程,常被用于进一步磨练模型的能力。


让我们来看看如何实现这一目标。训练语言模型通常包括三个步骤:预训练、微调和对齐(alignment)。


预训练


预训练通常需要极其庞大的语料库,使模型了解语言的一般结构。


Llama 3.1、GPT-4这种通用LLM,一般需要互联网规模的数据。而特定领域的LLM(如几何学、放射学、电信行业等)则需要注入相关的领域信息,这个过程被称为领域自适应预训练(Domain Adaptive Pretraining,DAPT)。


除了要贴近相关领域,另一种在预训练阶段使用合成数据的例子当属Phi-1.5模型,目的是注入逻辑推理能力。


微调


掌握了语言的一般结构后,下一步就是微调,让模型更好地遵循指令、完成特定任务。


比如,要让模型提高逻辑推理能力、实现更好的代码生成和函数调用,或者提升阅读理解类任务的表现,都可以通过微调来实现。


Self-Instruct、WizardCoder、Alpaca等模型都通过创建特定领域的数据并进行微调,来定向提升模型能力。


对齐


最后,我们希望确保模型响应的风格和语气与用户期望一致,例如听起来像对话、具有适当的详细程度、复杂性、一致性等。


可以创建一个包含指令模型(instruct model)和奖励模型(reward model)的流水线来实现这个需求。


先让模型对同一问题创建多个响应,然后让奖励模型对这些相应的质量进行反馈。这种方法属于从AI反馈中进行强化学习(Reinforcement Learning from AI Feedback, RLAIF)。


改进其他模型和系统


除了改善语言模型本身,合成数据还可以应用于LLM邻接模型(LLM-adjacent model)以及LLM驱动的流水线。


最经典的例子就是检索增强生成(Retrieval Augmented Generation,RAG),先用嵌入模型来检索相关信息,再让语言模型生成最终答案。


在这个过程中,我们可以使用LLM来解析底层文档和合成数据,从而评估并微调嵌入模型。


类似于RAG,任何智能体(Agentic)流水线都可以被评估,其组件模型也可以被微调,实现方式就是用LLM驱动的智能体来构建模拟。


这些模拟还可以用于研究行为模式,此外,也可以在LLM中设定特定角色,以针对特定任务进行大规模数据生成。


使用合成数据评估RAG


为了更好地理解上述讨论,我们来思考一个基本的流程,应用于一个具体的用例——为检索过程生成评估数据。


下述流程的实现代码已经上传至GitHub。



项目地址:https://github.com/NVIDIA/NeMo-Curator/tree/main/tutorials/synthetic-retrieval-evaluation


要创建用于评估检索流程的数据,主要面临以下2个挑战:


  • 多样性:问题不应只关注信息的单一方面或仅包含提取性问题

  • 复杂性:生成的问题应需要一些推理或多个证据来回答

我们将重点关注多样性,但为了探索复杂性角度——关键是找到具有重叠信息点的内容块。找到重叠信息的几种方法包括计算句子级语义的Jaccard相似度,并利用长上下文模型找到同一文档的不同块之间的关联。


多样性源自不同的视角,比如考虑如下文本:



对于同一篇文档,金融分析师可能对两家公司合并前后的财务状况感兴趣,法律专家可能关注公司面临的来自FTC、欧盟和其他方的法律审查,记者则希望了解事实要点。


所有这些都是有效的视角和用户角色。由于他们以不同的视角看待相同的信息,因此评估流程也需要适应这些视角。


因此,让我们设计一个评估流程,该流程以文档和用户角色作为输入,并以符合角色的语气输出问题。



图1. 三步流程的概述:生成用于评估检索过程的合成数据


如图1所示,这个评估流程有三个主要步骤。


步骤1:生成所有可能的问题


这些问题都是用户角色可能感兴趣的。


步骤2:筛选出相关的问题


从生成的问题中筛选出最相关和有价值的问题。


步骤3:引入用户角色的写作风格


将筛选出的问题转换为符合用户角色写作风格的形式。


通过这三个步骤,可以确保不同用户角色获得他们所需的信息,并以他们熟悉的方式呈现。


步骤1:生成问题


在生成问题之前,我们需要先读取文档并将其分成若干块(chunk)。


然后,让LLM从给定的文本块中,为每个用户角色提取感兴趣的点。


所谓的「用户角色」(persona),实际上就是对潜在用户的描述,比如:



由于多个用户角色可能有相似的兴趣点,因此需要使用嵌入模型来进行语义去重,从而为每个角色映射出段落中不同的相关信息。



多样性的另一个方面是问题类型。


我们需要提出各种类型的问题,如提取性、抽象性、比较性的问题,而不仅仅是简单的「如何/什么」问题。因此,下一步是根据段落中的信息,确定每个兴趣点适用的问题类型。


最后,利用文本块-兴趣点-问题类型的三元组,生成所有可能的问题。通过用户角色和问题类型,开发人员可以将生成的问题引导到用户会问的类型上。



步骤2:过滤问题


生成问题之后,下一步就是过滤并提取最有用的子集。首先,我们需要对所有生成的问题进行去重,因为不同的兴趣点可能会利用相邻的信息点,导致问题重叠。


接下来,我们使用LLM来判断问题与段落的相关性,确保这些问题能够完全通过段落中的信息回答。然后,我们将所有相关问题重写为对话语气。最后,我们会进行另一次过滤,分类并剔除那些可能过于笼统的问题。



步骤3:注入用户角色风格


在前两步中,我们创建并筛选了多样化的问题。最后一步是将用户角色的写作风格融入到问题中。


使用LLM,我们首先根据给定的用户角色描述来制定写作风格。然后,基于这些写作风格重新改写问题。


比如,可以这样描述用户角色的写作风格:




在这个三步流程结束后,我们得到了如下问题:


  • 鉴于现行的监管框架,拟议的合并还需要遵守哪些额外的政策指令,才能获得相关部门的批准?

  • SolarPower和GreenTech合并的哪些具体方面目前正在接受相关监管部门的审查?

  • 如果在大笔买断之后,GreenTech的研发中心保持单飞状态,那些天才会被炒鱿鱼吗?

可以看出,前两个问题很像Padma的语气,而第三个问题似乎是Aaron会问的。


这些问题各自包含了真实标签,对应特定的文本块,因此不仅限于这一个用例,可以用于评估各种检索流程。


文章来源于“新智元”,作者“新智元


AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
AI工作流

【开源免费】n8n是一个可以自定义工作流的AI项目,它提供了200个工作节点来帮助用户实现工作流的编排。

项目地址:https://github.com/n8n-io/n8n

在线使用:https://n8n.io/(付费)


【开源免费】DB-GPT是一个AI原生数据应用开发框架,它提供开发多模型管理(SMMF)、Text2SQL效果优化、RAG框架以及优化、Multi-Agents框架协作、AWEL(智能体工作流编排)等多种技术能力,让围绕数据库构建大模型应用更简单、更方便。

项目地址:https://github.com/eosphoros-ai/DB-GPT?tab=readme-ov-file



【开源免费】VectorVein是一个不需要任何编程基础,任何人都能用的AI工作流编辑工具。你可以将复杂的工作分解成多个步骤,并通过VectorVein固定并让AI依次完成。VectorVein是字节coze的平替产品。

项目地址:https://github.com/AndersonBY/vector-vein?tab=readme-ov-file

在线使用:https://vectorvein.ai/(付费)

2
智能体

【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。

项目地址:https://github.com/Significant-Gravitas/AutoGPT


【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。

项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md

3
RAG

【开源免费】graphrag是微软推出的RAG项目,与传统的通过 RAG 方法使用向量相似性作为搜索技术不同,GraphRAG是使用知识图谱在推理复杂信息时大幅提高问答性能。

项目地址:https://github.com/microsoft/graphrag

【开源免费】Dify是最早一批实现RAG,Agent,模型管理等一站式AI开发的工具平台,并且项目方一直持续维护。其中在任务编排方面相对领先对手,可以帮助研发实现像字节扣子那样的功能。

项目地址:https://github.com/langgenius/dify


【开源免费】RAGFlow是和Dify类似的开源项目,该项目在大文件解析方面做的更出色,拓展编排方面相对弱一些。

项目地址:https://github.com/infiniflow/ragflow/tree/main


【开源免费】phidata是一个可以实现将数据转化成向量存储,并通过AI实现RAG功能的项目

项目地址:https://github.com/phidatahq/phidata


【开源免费】TaskingAI 是一个提供RAG,Agent,大模型管理等AI项目开发的工具平台,比LangChain更强大的中间件AI平台工具。

项目地址:https://github.com/TaskingAI/TaskingAI

4
微调

【开源免费】XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。它帮助开发者提供一个简单易用的平台,可以对大语言模型(LLM)和多模态图文模型(VLM)进行预训练和轻量级微调。XTuner 支持多种微调算法,如 QLoRA、LoRA 和全量参数微调。

项目地址:https://github.com/InternLM/xtuner