ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
阿里开源视觉大模型Qwen2-VL:可理解20分钟长视频,性能比肩GPT-4o
6028点击    2024-09-01 11:31

还能玩纸牌游戏。


编译 | Vendii编辑 | 漠影


智东西8月30日消息,阿里通义千问于昨日开源新一代视觉语言模型Qwen2-VL。其中,Qwen2-VL-72B在大部分指标上都达到了最优,刷新了开源多模态模型的最好表现,甚至超过了GPT-4o和Claude 3.5 Sonnet等闭源模型。


据官方博客文章介绍,Qwen2-VL基于Qwen2打造,相比第一代Qwen-VL,Qwen2-VL具有以下特点:


1、能读懂不同分辨率和不同长宽比的图片:Qwen2-VL在多个视觉理解基准测试中取得了全球领先的表现,其中包括但不限于考察数学推理能力的MathVista、考察文档图像理解能力的DocVQA、考察真实世界空间理解能力的RealWorldQA、考察多语言理解能力的MTVQA。


2、能理解20分钟以上的长视频:Qwen2-VL可理解长视频,并将其用于基于视频的问答、对话和内容创作等应用中。


3、能够操作手机和机器人的视觉智能体:借助复杂推理和决策的能力,Qwen2-VL可集成到手机、机器人等设备,根据视觉环境和文字指令进行自动操作。


4、多语言支持:除英语和中文外,Qwen2-VL现在还支持理解图像中的多语言文本,包括大多数欧洲语言、日语、韩语、阿拉伯语、越南语等。


通义千问团队以Apache 2.0协议开源了Qwen2-VL-2B和Qwen2-VL-7B,并发布了Qwen2-VL-72B的API。开源代码已集成到Hugging Face Transformers、vLLM和其他第三方框架中。



GitHub项目地址:https://github.com/QwenLM/Qwen2-VL


一、媲美GPT-4o!多个指标刷新最好表现,3种规模模型开源


通义千问团队从6个方面来评估Qwen2-VL分别在72B、7B、2B三种规模上的视觉能力,包括复杂的大学水平问题解决、数学能力、文档和表格的理解、多语言文本图像的理解、通用场景问答、视频理解、视觉智能代理(Visual AI Agent)能力。


整体来看,Qwen2-VL-72B在大部分指标上都达到了最优,甚至超过了GPT-4o和Claude 3.5 Sonnet等闭源模型。


具体而言,该模型在文档理解方面优势明显,仅在复杂的大学水平问题解决方面和GPT-4o还有差距。同时,Qwen2-VL 72B也刷新了开源多模态模型的最好表现。



▲Qwen2-VL-72B模型能力分数比较(图源:通义千问团队官方博客文章)


在7B规模上,Qwen2-VL同样支持单图、多图、视频的输入,在更经济的规模上也实现了有竞争力的性能表现。


比如,Qwen2-VL-7B在DocVQA考察的文档理解能力,以及MTVQA考察的多语言文本图片理解能力都处于SOTA水平。在AI领域,SOTA模型通常是指在特定任务或数据集上性能表现最优的模型。



▲Qwen2-VL-7B模型能力分数比较(图源:通义千问团队官方博客文章)


除此之外,通义千问团队还提供了一个更小的2B规模的模型,以此支持移动端的丰富应用。Qwen2-VL-2B具备完整图像视频多语言的理解能力,特别在视频文档和通用场景问答方面,相较同规模模型优势明显。



▲Qwen2-VL-2B模型能力分数比较(图源:通义千问团队官方博客文章)


二、手写字体、公式代码、网页截屏、视频影像……多场景识别理解不在话下


在官方博客文章列举的多个模型能力案例中,Qwen2-VL覆盖了广阔的应用场景:能识别手写文字、图中文字,能转写数学公式、多种语言文字,能解数学几何题、LeetCode编程题,能读懂不同分辨率和不同长宽比的图片,能用特定格式输出答案,还能对视频内容进行总结和解读。


1、准确识别图中文字,轻松转写数学公式


对于下图列举出来的手写文字、融合在图像中的文字,Qwen2-VL都能准确地识别出对应的语种和文字内容(图中分别涉及到葡萄牙语、中文)。对于下图右下角,Qwen2-VL不只能识别出具体的数字,还能识别出各个数字对应的盒子的颜色。



▲Qwen2-VL能够准确识别图中的文字(图源:通义千问团队官方博客文章)


对于下图左半边中涉及到的复杂数学公式,Qwen2-VL可以轻松地用Markdown格式转写出来。对于下图右半边中涉及到的中文、日语、韩语、西班牙语、葡萄牙语、爱尔兰语、英语、德语、波兰语、希腊语、越南语、蒙古语、俄语、印地语、斯瓦希里语,Qwen2-VL也能一字不落地转录出来。



▲Qwen2-VL能够准确转录图中的复杂公式和多语种(图源:通义千问团队官方博客文章)


2、理解现实世界信息,准确输出问题答案


对于数学平面几何题目、LeetCode平台的编程题目、1792×14400尺寸的技术文档截图,Qwen2-VL也能识别理解并回答用户的提问。



▲Qwen2-VL能够解决的各种问题(图源:通义千问团队官方博客文章)


Qwen2-VL还能基于天气预报软件的截屏、网页搜索结果的截屏、Linux官方档案库的截屏等等抓取用户需要的信息,用特定格式(如表格、段落编号方式、JSON格式的数组)输出。



▲Qwen2-VL回答支持多种格式(图源:通义千问团队官方博客文章)


3、总结视频要点,解读视频内容


此外,除了静态图像,Qwen2-VL还能进行视频内容分析。它能够总结视频要点、即时回答相关问题,并维持连贯对话,帮助用户从视频中获取有价值的信息。


比如下图中,用户上传了一段2分57秒的视频,并让Qwen2-VL描述这段视频,描述的内容非常详细且准确。然后用户提问了视频中人物穿着的衣服的颜色,Qwen2-VL也给到了符合视频内容的回答。



▲Qwen2-VL能够识别视频,并围绕该视频回答相应问题(图源:通义千问团队官方博客文章)


三、实时数据检索+实时环境交互,或将碰撞出更多可能性


据官方博客文章介绍,Qwen2-VL在作为视觉代理方面展现出潜力,能初步利用视觉能力实现一些自动化工具的调用和交互。


视觉代理(Visual Agent)通常指的是一种AI系统,它能够处理和理解视觉信息(如图像或视频),并在此基础上进行决策或执行任务。


Qwen2-VL支持函数调用,使其能够利用外部工具进行实时数据检索,比如航班状态、天气预报、包裹追踪。



▲Qwen2-VL根据用户提供的航班信息调用“weather_hour24”工具查询天气状况(图源:通义千问团队官方博客文章)


通义千问团队还初步做了一些简单的探索,让模型能够更像人一样和环境交互。“使得Qwen2-VL不仅作为观察者,而是能有代替人做更多的执行者的可能。”官方博客文章写道。


结语:语言能力已经远远不够!模型正在卷向多模态


随着AI技术的飞速发展,语言模型曾一度成为技术竞争的焦点,但自2023年3月15日OpenAI发布了能够读图的GPT-4后,多模态模型的战鼓也是越敲越响。模型不再局限于处理单一的文本数据,而是通过整合图像、视频、音频等多种信息源,展现出更为强大的认知和理解能力。


视觉语言模型是多模态模型领域内的一个重要细分方向。这些模型通过结合计算机视觉与自然语言处理技术,在图像理解、生成及跨模态交互等领域展现出巨大潜力。它们可以被应用于视觉问答(VQA)、图像分类、目标检测、图像分割等多种任务,未来有望在医疗诊断、机器人技术等领域内实现更加广泛的应用。


来源:GitHub


文章来源“智东西”,作者“智东西”


AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
智能体

【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。

项目地址:https://github.com/Significant-Gravitas/AutoGPT


【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。

项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md

2
逆向大模型

【开源免费】kimi-free-api是一个提供长文本大模型逆向API的开渔免费技术。它支持高速流式输出、智能体对话、联网搜索、长文档解读、图像OCR、多轮对话,零配置部署,多路token支持,自动清理会话痕迹等原大模型支持的相关功能。

项目地址:https://github.com/LLM-Red-Team/kimi-free-api?tab=readme-ov-file

3
免费使用GPT-4o

【免费】ffa.chat是一个完全免费的GPT-4o镜像站点,无需魔法付费,即可无限制使用GPT-4o等多个海外模型产品。

在线使用:https://ffa.chat/