ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
「无问芯穹」完成近5亿元A轮融资,成立仅16个月已吸纳近10亿丨智涌首发
7524点击    2024-09-02 16:56


智能涌现获悉,「无问芯穹」宣布完成近5亿元A轮融资。这也是目前为止,国内AI Infra(大模型基础设施)层创业公司最大的单笔融资记录。


本轮融资联合领投方为社保基金中关村自主创新专项基金(君联资本担任管理人)、启明创投和洪泰基金,跟投方包括联想创投、小米、软通高科等战略投资方,国开科创、上海人工智能产业投资基金(由临港科创投担任基金管理人)、徐汇科创投等国资基金,以及顺为资本、达晨财智、德同资本、尚势资本、森若玉坤、申万宏源、正景资本等财务机构。


「无问芯穹」联合创始人、CEO夏立雪表示,本轮投资将用于加强技术人才吸纳与技术研发,深入推动产品商业化发展并强化生态合作。


值得注意的是,成立仅仅16个月,「无问芯穹」的累计融资额已近10亿元。这家公司过往投资方还包括红杉中国、百度、智谱、同歌创投等。


整合异构算力,让大模型落地更便宜


近年来,国际上模型层与芯片层逐渐形成“双头收敛”格局,而中国的模型层与芯片层,却呈现由多种模型、多种芯片的格局。


这也导致了,不同硬件平台需要适配不同软件栈和工具链,异构芯片间长久存在着难以兼用的“生态竖井”现象。


而当越来越多国产异构算力芯片被应用于全国各地的算力集群中,异构算力难以被有效利用的问题日益严峻,逐渐成为中国大模型产业发展的瓶颈。


为此,「无问芯穹」从这一难题切入,通过软硬件联合优化技术,持续提升芯片算力在大模型任务中的利用率,并且,通过多元异构算力适配技术,「无问芯穹」尝试提升集群算力利用率,扩大行业整体算力供给。


夏立雪表示,在软硬件联合优化方面,「无问芯穹」自研的推理加速技术(FlashDecoding++),能够提升主流硬件推理效率2-4倍,且已经完成多个主流开源大模型在10余种计算卡(AMD、华为昇腾、壁仞、寒武纪、燧原、海光、天数智芯、沐曦、摩尔线程、NVIDIA)上的适配。


基于这一方案取得的优化效果,「无问芯穹」此前也与AMD签署战略合作,携手推动商用AI应用的性能提升。


在多元异构算力适配方面,「无问芯穹」今年7月发布的大规模异构分布式混合训练系统HETHUB,也是业内首次在六种芯片、“4+2”组合间(华为昇腾、天数智芯、沐曦、摩尔线程和AMD、NVIDIA),实现了千卡规模的异构算力混合训练,集群算力利用率最高达到97.6%,平均高出基准方案约30%。


这也意味着,在相同的异构算力条件下训练大模型时,「无问芯穹」可将训练总时长压缩30%


夏立雪表示,「无问芯穹」正在围绕“以电换Token”思路,展开AI的基础设施建设,他们的目标是,让大模型落地成本实现10000倍下降,成为大众触手可及的“水电煤”。


布局企业级基础设施、端侧LPU


「无问芯穹」在商业化层面进展迅速。


此前,「无问芯穹」已经和智谱联合发布大模型万卡训推计划,共建大模型训推万卡集群;猎聘旗下的AI大模型产品“多面”,背后也是「无问芯穹」的Infini-AI异构云平台在提供技术和产品支持。


夏立雪向智能涌现表示,Infini-AI异构云平台,正是由「无问芯穹」基于多元芯片算力底座打造,向下兼容多元异构算力芯片。这一平台所运营的算力,覆盖全国15座城市,成为目前拥有可运营算力规模最大的AI Infra创业公司。


除了算力服务之外,Infini-AI异构云平台还包含一站式AI平台(AIStudio)和大模型服务平台(GenStudio),提供了适合于开发者的AI工具。


据介绍,“AIStudio一站式AI平台”,为机器学习开发者提供高性价比的开发调试、分布式训练与高性能推理工具;GenStudio大模型服务平台,则为大模型应用开发者提供了高性能、易上手的多场景大模型服务,降低开发成本和门槛。


据夏立雪介绍,自Infini-AI异构云平台上线以来,已有Kimi、LiblibAI、猎聘、生数科技、智谱AI等多个大模型行业头部客户,在Infini-AI异构云平台上稳定使用异构算力,享受「无问芯穹」提供的大模型开发工具链服务。


而随着大模型应用的规模化普及,未来推理任务的算力占比大概会达到 70~80%。但要运行动辄数十亿至数万亿参数规模的大语言模型,需要庞大的计算资源和内存带宽,构建和运营成本高昂。


为此,LPU是端侧大模型的一项可选项,遵循算力利用率提升思路,「无问芯穹」在端侧大模型和LPU IP领域亦有布局。夏立雪向智能涌现表示,「无问芯穹」正打造“端模型+端芯片”闭环能力,帮助端侧场景快速增长和应用爆发。


文章来源于“智能涌现”,作者“ 邱晓芬


关键词: 无问芯穹 , HETHUB , AI , AI融资 , AI公司