ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
AI Agent如何实现业务流程自动化及价值体现
4942点击    2024-09-24 09:55

AI Agent将实现对业务任务自动编排,完成更为复杂的业务活动、业务流程。


随着人工智能、大数据等技术的发展及应用,企业对于自动化技术的需求变得更加智能化、信息化和一体化。传统的机器人流程自动化(RPA)、业务流程自动化(BPA)和低代码应用平台(LCAP)等技术在企业应用中发挥了重要作用,但它们之间技术的重叠也给企业带来了选择和整合的挑战。


Gartner在报告《Beyond RPA, BPA and Low Code — The Future Is BOAT 》中提出了新的概念——业务编排和自动化技术(BOAT: business orchestration and automation technologies),探索了企业应用程序未来一种新的发展趋势。


大模型技术的进步驱动着业务编排和自动化平台的发展


BOAT是一种新兴的软件技术趋势,它旨在整合并推动业务流的自动化和编排。BOAT平台提供了端到端的业务流程自动化能力,同时通过多种集成方式连接不同的企业系统。


  • 自动化技术的重叠推动市场的整合


随着不同自动化技术的快速发展,现有的RPA、BPA、iPaas和LCAP供应商已经提供了诸如业务流程编排、智能文档处理、流程挖掘等共通的能力。不同的自动化技术迅速重叠,促使企业应用领导者开始寻求一种能够全面覆盖各种自动化用例的端到端需求的平台。


  • 自动化的未来是自主的


这些未来自动化平台出现的关键推动因素之一是专业和生成式AI技术的进步。这些技术通过为流程执行和流程管理赋予智能性、自主性和适应性三大特性,以此来增强自动化工具的能力。


而随着大模型技术的发展,几乎所有RPA、BPA、LCAP和iPaaS的软件供应商都在设计专注于模型选择、优化、内容生成和智能代理的产品路线图。


  • 模型选择:提供增强的AI技能和工作室,扩展对来自亚马逊、Anthropic、谷歌和OpenAI等企业的通用LLMs的访问,并开发具有默认和自定义提示的专有、专业LLMs。
  • 优化:针对金融、保险、医疗保健和其他行业的特定需求微调LLMs,使其更具上下文感知能力。
  • 内容生成:将LLMs嵌入平台中,帮助客户进行智能内容生成、内容分析、代码生成、流程文档化、AI辅助测试等。
  • 智能代理:构建能够对话和感知上下文的智能代理,并将响应事件以实现自动化。这些代理可以被编排来执行一系列端到端任务。


BOAT平台除了包含来自BPA、RPA和iPaaS等技术的共同能力外,还嵌入了智能文档处理和流程挖掘、生成式AI等技术。其中的生成式AI能力更专注于Prompt驱动的开发、工作流设计、内容生成、非结构化数据提取、多个LLMs的编排等能力。


Gartner认为自动化的未来是由“AI优先”能力驱动的自主化。BOAT平台通常能够:


  • 支持具有复杂规则的工作流的长期运行。
  • 由AI Agent驱动的任务智能编排和自主规划。
  • 日常任务自动化。
  • 非结构化数据的智能抽取。


图源来自:Gartner报告


如何将AI Agent与企业已有IT架构进行融合


在BOAT的理念基础上,我们在实践探索中认识到,AI Agent与企业已有IT架构的融合至关重要。我们认为,Agent的重要价值之一是将已有系统中的有效数据和知识相结合,参考企业的组织架构和流程,结合实际的业务场景和业务数据,AI Agent实现流程的自动编排,将组织的流程自动化推向流程智能化,并在实际场景中重塑或优化企业的流程和专家知识。


图源来自:澜码科技


在这一产品设计架构中,我们将 AI Agent 生态与企业已有IT架构——包括已有的应用系统、数据库以及分析平台等实现深度整合。通过这样的结合,可以更好地将业务的关键属性进行封装,使Agent具备三个至关重要的功能:行动、参考和洞察。


  • 行动:AI Agent与现有的各种应用系统无缝协作,高效地实现数据交互和业务流程的自动化执行;
  • 参考:AI Agent还能从已有数据库中精准获取丰富的信息和知识,为决策提供坚实可靠的参考依据。
  • 洞察:通过深入分析和挖掘数据,Agent 能够敏锐洞察业务中的潜在模式和趋势,为企业提供极具价值的见解和建议。


以销售管理场景为例,我们可以将销售管理Agent结合企业目前使用的IT系统,包括客户关系管理系统(CRM)、企业资源规划系统(ERP)和销售IM工具和一些分析系统等,使其具备行动、参考和洞察的能力,帮助企业实现更高效、更智能的销售管理,以实现业务价值。


图源来自:澜码科技


在行动能力方面,销售管理Agent通过自动执行销售流程中的常规任务,如数据录入、订单处理等,从而提高销售效率。具体来说,当客户下订单时,Agent可以自动从CRM系统中获取客户信息,从ERP系统中检查库存情况,并在销售自动化工具中生成订单。


在参考能力方面,销售管理Agent可以参考历史销售数据和最佳实践案例,为销售人员提供决策支持。比如,当销售人员面对潜在客户时,Agent能够深入分析该客户的历史购买行为和偏好,并提供个性化的销售建议。


在洞察能力方面,销售管理Agent可以通过数据分析和挖掘,洞察销售流程中潜在的问题和机会。例如,Agent可以根据客户需求,分析销售数据,发现某个地区的销售业绩增长趋势的变化,并及时向管理层发出预警,以便及时调整策略和采取措施。


将可组装的业务单元自动编排是实现Agent自主化的有效途径


当前,企业内部的数字化基本上还只是记录了业务流程中人与人之间的交互、具体的业务对象和业务规则。而对于业务过程、业务编排几乎没有记录,更不要说人在决策过程中的各种推演、复盘。


基于此,我们可以将业务流程、业务目标、业务数据预置,通过模块化组装和自动编排以快速构建业务流程,并满足其灵活性需求。即通过智能化的AI Agent进行自动编排,业务流能够实时进行调整和优化,确保资源的高效分配和利用。


我们认为,企业中的业务流程可以分为以下4层:


图源来自:澜码科技


  1. 业务流程(Process):流程由多个部门或多个角色协同配合完成,每个流程都有明确的目标。
  2. 业务活动(Activity):业务流程通常由多个业务活动组成。业务活动一般是由单一角色的或同角色的人完成。
  3. 业务任务(Task):业务任务由多个业务步骤组成,具有上下文相关性,但与时间无关。
  4. 业务步骤(Step)是业务任务中的最小操作单元,涉及单一角色或人员,通常是具体的操作步骤,与上下文和时间无关。


以银行场景为例,对公客户经理的产品营销就是一项业务活动。该业务活动可以被拆解为:售前的客户需求挖掘和售中的产品个性化配置等业务任务。这些业务任务又可被拆解成多个业务步骤,如客户画像分析、常见产品问题回答、客户需求识别、产品个性化配置以及表单智能填写等。


业务任务可以根据业务复杂程度细分为简单的业务任务与复杂的业务任务。对于简单的业务任务,我们通过工作流的编排来实现简单业务任务的快速落地。以体检报告的处理为例,通过工作流可以实现快速、准确地从体检报告中提取特定信息,如各项生理指标等,并自动提取专业的医学意见,为医生的诊断和患者的健康管理提供有力支持。


而针对复杂的业务任务,我们可以通过对话流+记忆组件实现对问题改写、扩写和反问等功能。这种方式能够更精准地理解和澄清任务要求,使得AI Agent能够更好地理解用户的意图,提供个性化的解决方案。例如,在医疗分诊场景中,通过与患者的对话,系统可以准确评估病情的紧急程度和所属科室,确保快速准确的分诊,从而提高医疗资源的利用效率。


一个完整的业务活动或者业务流程的实现,将更依赖AI Agent对业务任务的自动编排能力:多个业务任务可以并行处理,并能根据客户的选择动态生成更多的任务,从而更好地完成业务活动。如在银行的复杂业务环境中,不同的业务任务可能需要不同的模型和 Agent 来处理,如客服 Agent、风险评估 Agent、产品营销Agent等。通过多 Agent 的协同,可以帮助企业提高效率,降低成本,也进一步证明了 AI Agent 和大模型之间的差异化价值。


通过AI Agent对业务任务进行自动编排,完成更为复杂的业务活动、业务流程,能够有效将过去的专家知识和经验数字化,并沉淀下来,为下一阶段更高级的 AGI 的发展提供“燃料”。同时,结合OpenAI最新发布的o1系列模型,从工程价值的角度来看,其开启了异步推理的模式,这也意味着在考虑 ROI(投资回报率)的情况下,采用多模型的 Agent 和多 Agent 协同的实现方式变得势在必行。


文章来自于“周健@澜码科技”,作者“周健”。


关键词: AI , 智能体 , Agengt , 人工智能
AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
AI工作流

【开源免费】n8n是一个可以自定义工作流的AI项目,它提供了200个工作节点来帮助用户实现工作流的编排。

项目地址:https://github.com/n8n-io/n8n

在线使用:https://n8n.io/(付费)


【开源免费】DB-GPT是一个AI原生数据应用开发框架,它提供开发多模型管理(SMMF)、Text2SQL效果优化、RAG框架以及优化、Multi-Agents框架协作、AWEL(智能体工作流编排)等多种技术能力,让围绕数据库构建大模型应用更简单、更方便。

项目地址:https://github.com/eosphoros-ai/DB-GPT?tab=readme-ov-file



【开源免费】VectorVein是一个不需要任何编程基础,任何人都能用的AI工作流编辑工具。你可以将复杂的工作分解成多个步骤,并通过VectorVein固定并让AI依次完成。VectorVein是字节coze的平替产品。

项目地址:https://github.com/AndersonBY/vector-vein?tab=readme-ov-file

在线使用:https://vectorvein.ai/(付费)

2
智能体

【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。

项目地址:https://github.com/Significant-Gravitas/AutoGPT


【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。

项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md

3
微调

【开源免费】XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。它帮助开发者提供一个简单易用的平台,可以对大语言模型(LLM)和多模态图文模型(VLM)进行预训练和轻量级微调。XTuner 支持多种微调算法,如 QLoRA、LoRA 和全量参数微调。

项目地址:https://github.com/InternLM/xtuner

4
prompt

【开源免费】LangGPT 是一个通过结构化和模板化的方法,编写高质量的AI提示词的开源项目。它可以让任何非专业的用户轻松创建高水平的提示词,进而高质量的帮助用户通过AI解决问题。

项目地址:https://github.com/langgptai/LangGPT/blob/main/README_zh.md

在线使用:https://kimi.moonshot.cn/kimiplus/conpg00t7lagbbsfqkq0