ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
前百度研究院副院长新项目:给手机、PC做可用的大模型基础设施,前微软高管加入 | 智涌独家
6673点击    2024-09-24 10:50

《智能涌现》独家获悉,前百度研究院副院长李平的新创业公司VecML,近期已经完成了产品的探索和初步研发。值得注意的是,VecML近期还邀请到了前雅虎和Ebay首席科学家、前Walmart副总裁,和前微软技术高管Jan Pedersen博士,出任VecML首席战略官(CSO)。


VecML创始人李平博士,于2007年博士毕业于斯坦福大学,获得统计学博士学位,计算机科学硕士学位和电子工程硕士学位。博士毕业后,李平曾在康奈尔大学和罗格斯大学任教,并于2013年成为计算机系和统计系终身教授,并在www.csrankings.org 的全球计算机大学和学者排名中名列前茅。


△李平


李平是完整经历了上一个AI 1.0时代,且在国内大厂完整经历了从0到1搭建AI团队的顶级技术专家。


创业前,李平任微软(LinkedIn)公司的杰出科学家。加入微软之前,李平曾经是百度首席架构师(T11)和百度研究院副院长,并且直接管理百度认知计算实验室(Cognitive Computing Lab,CCL),落地成果包括超大规模深度学习GPU平台、多模态向量检索和生成、强化学习、知识图谱等生成式AI的核心技术。


自ChatGPT推出后不到两年,如今生成式AI浪潮的关注焦点,已经迅速从基座大模型快进到AI应用落地。


尽管生成式AI浪潮的发展速度,已经比历史上任何一个互联网浪潮都更快,但在今年,AI界的共识并不十分牢固——对于“超级应用”的质疑、对OpenAI下一代大模型的疑问和不安,某种程度上,都是AI界和公众热切期待的映射。


同时,这也体现出:生成式AI技术的落地,仍在相当早期的阶段。


在2024年选择成立VecML,就是李平对于AI应用落地难题的冲刺尝试。VecML希望能够做下一代端侧AI的基础架构和边缘计算平台,让端侧的设备,也能完成更高难度的大模型计算。


端侧,即手机、PC、家电等各类终端设备。如今市面上的AI大模型,即使是在手机上展示输出结果,但绝大多数的计算都通过云端进行。


有分析数据显示,目前端侧AI只占整个AI市场5%的份额。原因在于,大模型的体量太大,而PC或手机的芯片,其计算和内存能力又太有限。


这是AI应用落地当下的最大桎梏。


对比普遍在数千亿至万亿参数的大模型,现在的手机端最多也只能运行量化后的70亿(7B)参数内的大模型,也就是说,纯靠端侧的算力,只能承载最简单的应用,如基础的文字对话、生图等等。


如果想让AI应用真正走进大众的生活,现有的端侧“基础设施”——从端侧的电池、芯片等硬件,到软件侧的响应速度等等,达到AI应用能够爆发的阶段,还有很远距离。


从年初成立新公司至今,VecML已经推出了一套端侧AI基础架构和边缘计算平台。


这可以看作是一个部署、开发端侧AI模型的“工具箱”,企业客户通过这个平台,能够完成端侧AI的部署和运行。



△VecML平台的主要组成部分:端侧大语言模型和优化平台;基于神经网络相似度的向量数据库和知识库;RAG服务平台;安全和隐私保护平台;机器学习平台,包括联邦学习和分布式计算;


李平对《智能涌现》表示,VecML团队均来自微软,百度,亚马逊等IT巨头或者顶尖大语言模型团队,在AI模型安全、隐私计算、大规模分布式计算、联邦学习、模型压缩和数据压缩等领域都有核心原创技术贡献。这是做好端侧AI的必要条件。


在当前专攻的在端侧AI领域,团队也有多年的专业积累。比如,在2017年的NeurIPS上,李平的一项工作即证明了量化压缩的最优平衡点是3-5比特。而现在流行的端侧大模型,即是4比特和3比特模型。


而比起大模型的参数、训练工程之巨大,端侧的核心开发难点,可以说是要怎么在极小的模型和极小的内存空间上精细雕刻。


“比如,手机上的模型只有云端模型百分之一的参数、和千分之一的上下文长度(即每次和模型交互,单次输入的文本长度)。如果要做好RAG功能,在云端大模型上,如果不计成本,只要直接扔文件进去就好,但在手机上大模型需要在文件中,精准找到直接相关的文件部分,加起来不能超过数百token,再放进提示词中。”李平对《智能涌现》解释。



△基于VecML开发的,可以运行在Android手机上的APP,不需联网


当前,基于VecML开发的手机端大模型应用,已上线了包括本地视频/图像搜索、智能本地文件搜索等等功能,调用速度也显著快于基于云端的大模型。


如果AI可以全部或部分在端侧完成,这意味着什么?


首先,企业在云计算上的开销就基本没有了,对企业成本和社会成本的节省将有巨大意义。


另外,因为用户数据的存储和计算都在本地,AI大模型涉及的隐私问题会得以有效解决——就在前不久,苹果AI的隐私隐患就被马斯克猛烈抨击。而在8月,荷兰数据保护局(DPA)在其官网宣布对优步(Uber),因为其把欧洲用户隐私数据传回美国,处以2.9亿欧元的罚款。


这也会很有效地提升算力利用效率。分布式计算天然和端侧AI紧密相关。数量巨大的端侧设备可以联合起来一起训练或者推理,真正把端侧算力充分利用起来。有效的分布式计算需要解决非常多的技术难题,包括隐私保护,数据压缩,高效数据传输,高效优化算法等。


VecML所在的AI Infra赛道,是链接算力和应用的中间层基础设施。在基座模型仍在快速迭代时,其“承上启下”的地位更加重要——如何充分挖掘现有模型的潜力,决定着AI应用能够走多远、多深。对模型前沿技术的突破,就至关重要。


谈及VecML的优势,李平表示,当前公司已积累的多项原创技术,可让端侧AI的计算效率大大提升。


比如,手机上存储的数据很多都为非结构化数据,需要通过建立向量关系,来让AI可以准确搜索到这些数据。目前,业界在手机上使用的向量数通常不超过20万,但通过VecML的原创方案,可以在降低内存10倍的前提下,也不影响AI搜索速度,这意味着手机上可以建立上千万向量的数据库。


另外,在隐私保护层面,两种主流技术路线包括多方计算和差分隐私,但都有其局限。其基于加密解密的多方计算速度太慢,远不能满足实用需求;而基于差分隐私算法因为对精度损失太大极少被工业界采用。


当前,VecML的原创隐私保护技术,已经可以在基本上不影响精度的前提下,达到数学上严格的隐私保护要求。


近期加入VecML的Jan Pedersen博士,是一位AI界老兵。他在1998年就在搜索先驱公司InfoSeek任总监,和如今的百度CEO李彦宏曾经是同事。Jan Pedersen曾于AltaVista、雅虎和亚马逊担任过首席科学家职位,而后加入微软。2016年,他被任命为微软集团的Technical Fellow,当年这是在全球仅有20位的高管。



△Jan Pedersen博士


据Bessemer 2024年的AI Infra报告,生成式AI浪潮来临后,数据数量,尤其是非结构化数据,到2030年预计将激增至612 ZB,这将逼近现有基础设施的极限,也在倒逼其进行更新。


因此,从2023年开始,AI Infra的创业热度大大提升,从AI训练、框架、观测、部署、评估等等环节,都有不少公司入局,开发相应的基础设施平台产品。


这个赛道接下来或许要迎来一场加速战。如今,全球手机、PC厂商都把AI作为发展重点,端侧AI是他们不能允许自己错过的下一代入口。而就在这个9月,苹果正式发布第一台AI手机iPhone 16,也又一次把大众对端侧AI(Edge AI)的关注,推向新高峰。


封面来源视觉中国


文章来源“智能涌现”,作者“邓咏仪”


关键词: AI , 人工智能 , AI硬件 , 大模型
AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
知识库

【开源免费】FASTGPT是基于LLM的知识库开源项目,提供开箱即用的数据处理、模型调用等能力。整体功能和“Dify”“RAGFlow”项目类似。很多接入微信,飞书的AI项目都基于该项目二次开发。

项目地址:https://github.com/labring/FastGPT

2
RAG

【开源免费】graphrag是微软推出的RAG项目,与传统的通过 RAG 方法使用向量相似性作为搜索技术不同,GraphRAG是使用知识图谱在推理复杂信息时大幅提高问答性能。

项目地址:https://github.com/microsoft/graphrag

【开源免费】Dify是最早一批实现RAG,Agent,模型管理等一站式AI开发的工具平台,并且项目方一直持续维护。其中在任务编排方面相对领先对手,可以帮助研发实现像字节扣子那样的功能。

项目地址:https://github.com/langgenius/dify


【开源免费】RAGFlow是和Dify类似的开源项目,该项目在大文件解析方面做的更出色,拓展编排方面相对弱一些。

项目地址:https://github.com/infiniflow/ragflow/tree/main


【开源免费】phidata是一个可以实现将数据转化成向量存储,并通过AI实现RAG功能的项目

项目地址:https://github.com/phidatahq/phidata


【开源免费】TaskingAI 是一个提供RAG,Agent,大模型管理等AI项目开发的工具平台,比LangChain更强大的中间件AI平台工具。

项目地址:https://github.com/TaskingAI/TaskingAI

3
AI搜索

【开源免费】MindSearch是一个模仿人类思考方式的AI搜索引擎框架,其性能可与 Perplexity和ChatGPT-Web相媲美。

项目地址:https://github.com/InternLM/MindSearch

在线使用:https://mindsearch.openxlab.org.cn/


【开源免费】Morphic是一个由AI驱动的搜索引擎。该项目开源免费,搜索结果包含文本,图片,视频等各种AI搜索所需要的必备功能。相对于其他开源AI搜索项目,测试搜索结果最好。

项目地址:https://github.com/miurla/morphic/tree/main

在线使用:https://www.morphic.sh/

4
prompt

【开源免费】LangGPT 是一个通过结构化和模板化的方法,编写高质量的AI提示词的开源项目。它可以让任何非专业的用户轻松创建高水平的提示词,进而高质量的帮助用户通过AI解决问题。

项目地址:https://github.com/langgptai/LangGPT/blob/main/README_zh.md

在线使用:https://kimi.moonshot.cn/kimiplus/conpg00t7lagbbsfqkq0