ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
【深度】OpenAI o1技术原理分析及产业影响
7807点击    2024-09-25 18:19

深入探讨OpenAI o1模型的技术原理以及产业影响。


距离OpenAI发布o1模型已经过去一周,其口碑出现了明显的两极分化。


一种声音认为o1的出现意味着人类距离AGI只有咫尺之遥,另一种声音认为o1又贵又不好使,其能力表现甚至不如GPT-4。


沉淀一周后,我们结合熵简AI团队的研究成果,对o1的技术原理及产业影响进行详细探讨,形成了以下判断,与各位分享。



原始报告的获取链接放在文末,欢迎感兴趣的朋友下载。


(1)直观认识o1模型强大的推理能力


OpenAI于9月13日推出o1模型,在逻辑推理能力上大幅提升。


在AIME 2024数学竞赛中,o1模型的准确率达到惊人的83.3%,相比之下GPT-4o的准确率只有13.4%,提升6倍。


在CodeForces代码竞赛中,o1的准确率甚至达到了89%,GPT-4o的准确率是11.0%,呈现大幅提升。



用柱状图来说明逻辑推理能力的提升,还不够直观。下面我用OpenAI官方的一个具体案例,来说明o1目前的逻辑推理能力到底达到了怎样的水平。


这是一个“密码破译”的例子,给定一串密文“oyfjdnisdr rtqwainr acxz mynzbhhx”,它应该翻译成明文“Think step by step”,请你根据以上规则,翻译以下密文:oyekaijzdf aaptcg suaokybhai ouow aqht mynznvaatzacdfoulxxz


下图是GPT-4o的回答,回答很工整,先“break this down step by step”,然后进行分词,但最后无法破译密码,认为只给出一个案例是不够的,希望我们给予更多提示。



接着让我们来看o1的回答:


首先,o1对给出的问题进行分析,认为可以先检查一下每个单词的长度。


它敏锐的发现,密文中每个单词的长度,和明文中每个单词的长度之间,有着2倍的关系。


oyfjdnisdr(10个字符)-> Think(5个字符)


rtqwainr(8个字符)-> step(4个字符)


在这个基础上,o1推测应该存在一种映射关系,使得密文中相邻的2个字符能够映射为明文中的1个字符,即:


oy -> T


fj -> h



那么怎么才能把'oy'映射到'T'呢?


针对这个问题,o1进行了多种尝试。首先,按字母在字母表中的顺序位置,可以假设o等于15,y等于25,T等于20。


o1尝试了加法,尝试了减法,发现都不对。


随后o1尝试把o和y相加,并对26求模,发现也不对。


然后o1发现,把o和y相加再除以2,正好等于T。


发现规律的时候,o1说:Wait a minute, that seems promising.


随后,o1把这个规则用在了其他字符组上进行验证,都成功了。



因此,o1找到了密码破译的规则,那就是把密文中相邻2个字符在字母表中的位数相加并除以2,就得到了明文字符在字母表中的位置。


通过这个规则,o1把“oyekaijzdf aaptcg suaokybhai ouow aqht mynznvaatzacdfoulxxz”这串密码成功翻译了出来,答案是:


There are three R's in Strawberry.



通过这个例子,我们能够更直观的感受o1模型强大的逻辑推理能力。


尤其值得注意的是,这种推理能力不是单纯纵深式的推理,而是类似决策树的层层递进。遇到困难的时候,o1会做出假设,并对假设进行验证。如果假设被证伪,它会选择其他思路进行突破,最终得到正确答案。


相比CoT(思维链)而言,它更像是ToT(思维树)的结构。


(2)o1原理猜想:RL+MCTS,将CoT能力内化


目前OpenAI官方对于o1的原理是讳莫如深的,只有一篇官方的技术报告,标题为《Learning to Reason with LLMs》。


全文不长,但其中关于o1原理的探讨更少,只有一句话:Through reinforcement learning, o1 learns to hone its chain of thought and refine the strategies it uses.


先说结论,我们认为o1模型的核心在于:通过RL及MCTS,将CoT能力内化进LLM中。


在o1出现之前,CoT能力更多是一种Prompting技巧,是独立于LLM之外存在的,而o1的价值在于将思维链的能力内化到了LLM中。



那么具体而言,o1是如何做到这点的呢?为了回答这个问题,我们得参考去年关于Q*的探讨。


要知道,Q*、Strawberry、o1本质上是相通的,因此去年底对Q*的解读和分析,对于我们理解o1的工作原理是相当有帮助的。



在去年12月的时候,我们对Q*的原理做了详细的探讨和推测,具体可以参考这篇文章:


【重磅】解码OpenAI Q*:迈向AGI的信仰之跃


在对其技术原理进行分析之前,我们先讲讲大模型训练的第一性原理。


(3)大模型训练的第一性原理


大模型训练的第一性原理:本质上大模型的能力都来自于训练数据,体现某方面能力的训练数据密度越高,训练出的大模型这方面的能力就越强。


粗略的分类,大模型的能力体现为三块:语言表达能力、知识记忆能力、逻辑推理能力。


可以说,大模型的这三项能力的获取和掌握,与上述的第一性原理是密不可分的。


首先来看语言表达能力。大模型的语言表达能力很强,各国语言来回翻译很少出错,也鲜有用户反馈说大模型的回答存在语法错误,这是为什么呢?


这是因为,随便找一份训练数据,里面的每一句话都包含着语法信息。所以训练数据中体现语言表达能力的数据密度是非常高的,这也是为何大模型的语言能力很强的原因。


再来看知识记忆能力。这是大模型的另一项重要能力,但偶尔会出现记忆错误,体现为幻觉现象。比如我们问大模型水浒传108将分别有谁,大模型可能会说有武大郎。


这是因为世界知识的覆盖面非常广泛,虽然训练数据体量很大,但是分散到任何专项知识的数据集就很少了。训练数据密度低了,自然训练出的大模型这方面的能力就弱,对专项知识的掌握就不够扎实,体现为幻觉。


然后再来看逻辑推理能力。这次o1模型在逻辑推理能力上产生了巨大突破,那么为什么此前的大模型在逻辑推理能力上比较弱呢?


这是因为训练集中包含推理过程的数据太稀疏了。


就比如现在您在看的这篇文章,本质上是我的思考结果,不是我的思考过程。


可能在未来的某一天,这篇文章会被训练进某个大模型中,但是大模型学到的是思考的结果而已,因为我们人类并不习惯于把大脑中发生的思考过程写成文字,一股脑都放到互联网上。


这就导致互联网上的海量数据中,包含推理过程的数据集非常稀疏。当我们把这样的训练集喂给大模型的时候,又怎么能够指望大模型学到强大的逻辑推理能力呢?


反过来思考,为了让大模型获得更强的逻辑推理能力,我们需要做的,恰恰是提供更多包含推理过程数据的训练集。


有了这个大前提,对于Q*(也就是o1)的理解就水到渠成了。


(4)23年底关于Q*的理解:解释微调、思维树、过程监督


去年下半年的时候,微软发布了Orca系列模型。Orca模型采用了高质量合成数据进行训练,取得了不错的效果。



值得注意的是,在训练Orca模型时,微软采用了Explanation Tuning的方法,本质上是用包含推理过程的数据集对模型进行训练。



通过在训练集中加入推理过程数据,Orca 2这样一个小模型,在性能上追平甚至打败了那些比它大5-10倍体量的大模型,说明解释微调是有效的。



去年另一项关键研究是ToT,即思维树,Tree of Thought。


卡尼曼在其著作《思考,快与慢》中提到一个著名的模型,即人类的思考活动可以分为系统1的快思考和系统2的慢思考。


当被问到“2+3=?”时,人类的推理过程和LLM很相似,根据上文直接推出下文,不带迟疑,这是系统1的快思考。


当被问到“23×68=?”时,我们无法直接得出答案,而需要在大脑中列出算式,进行乘法求解,得出答案后再填在纸上,这里面其实隐藏了100个token左右的思考推理,这是系统2的慢思考。


绝大部分存在经济价值的思维活动,都来源于人类的慢思考,因此如何给大模型加上慢思考的能力,是大家一直以来的追求。



慢思考有好几种框架,有单纯的CoT,有CoT+SC,也有ToT思维树,其中ToT这种方式的普适性更强,可以和树搜索算法相结合。



ToT这篇文章中,作者将慢思考能力用在了24点游戏上,给出4个数字,让大模型找到一种加减乘除的方式,让结果等于24。


通过ToT,大模型的成功率从7.3%直接提升10倍,到了74%,取得了非常显著的效果。



当时就有朋友质疑说,ToT这个方法对于卡牌类游戏可能有用,但是对现实生活中的复杂任务而言,可能是没用的。


但是别忘了,这次o1背后的核心作者之一Noam Brown之前就是专门研究扑克AI的专家,有时候智力游戏背后的AI经验是有着普适价值的。



去年另一篇关键的论文是OpenAI在5月发布的《Let's verify step by step》,这篇文章提出了“过程监督”的训练方法,大幅提升了大模型的数学推理能力。


由于这是OpenAI自己发布的文章,而且数学推理能力也是这次o1体现出来的核心能力之一,所以过程监督(PRM)大概率被用到了o1模型的训练中。



其实PRM的原理并不难理解。如果把人类标注员类比为数学老师的话,那就是从只给结果分,变成给过程分了。


首先让大模型对问题进行分步解答,然后标注员对回答结果按步骤给分。就算最后答案错了,只要过程对了,还是能得到过程分的。



OpenAI发现,通过这种“给过程分”的训练方式能够显著提升大模型对数学问题的推理能力。



综合以上分析,我们判断Q*(也就是现在的o1)其本质是通过自博弈强化学习,以及蒙特卡洛树搜索等技术,将思维树的推理能力,通过合成数据的形式训练给大模型,从而大幅增加大模型逻辑推理能力。


(5)24年以来的几篇重要论文


以上是23年底的判断,时间转眼来到了24年9月。


今年以来,有几篇关键论文,对于我们理解o1很有帮助。


第一篇是今年5月OpenAI发表的《LLM Critics Help Catch LLM Bugs》。OpenAI基于GPT-4,训练出了CriticGPT,一个专门给大模型找茬的模型。


人类用户让GPT-4写一段python代码,GPT-4写出来后,让CriticGPT对这段代码进行反思、查错,从而让生成结果更加准确。



这里面的核心思想,有点类似AlphaGo引入的自博弈强化学习。


众所周知,AlphaGo的训练分为两个阶段。第一阶段是模仿学习,即模仿海量顶尖人类棋手的棋谱。通过这个阶段的训练,AlphaGo成长得很快,但依然无法超过人类最强者。


随后DeepMind团队引入了第二阶段的训练,即自博弈强化学习。在AlphaGo基础模型之上,分化出两个孪生模型互相博弈。



通过引入自博弈强化学习,AlphaGo只通过短短40天的训练,就超过了人类最强棋手,进入无人能够企及的领域。



第二篇重要论文是由Google团队于今年6月发表的,题为《Chain of Thought Empowers Transformers to Solve Inherently Serial Problems》。


这篇文章从理论角度,说明了Transformer擅长并行计算,但并不擅长串行推理。而通过把CoT能力加入到模型中,能够有效增加Transformer模型处理串行复杂任务的能力。


进一步来看,通过Circuit Complexity Theory,作者证明只要CoT的步骤足够多,GPT模型就能够模拟任意大小的布尔电路。


布尔电路,就是由与或非门构成的逻辑电路。如果一个模型能够模拟任意大小的布尔电路,那么就能在多项式复杂度内解决所有决策类问题。这对把CoT能力内化到LLM中来说,是一个很强的理论支撑。



第三篇重要论文,是由Google DeepMind团队于今年8月发表的,题为《Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters》。


这篇文章通过实验证明,为了增加大模型的性能,与其去scaling up训练算力,不如scaling up推理算力。通过增加推理算力,能够让小模型胜过比它大14倍体量的大模型。



今年的这些重要研究,本质上和OpenAI o1模型的技术路径是高度吻合的。


在OpenAI官方披露的材料中,提到有两种方式能有效提升o1模型的推理性能,一种是增加强化学习时的训练算力,另一种则是增加推理时用的测试算力。


o1模型的主创之一Jason Wei(他也是CoT的发明人)就提出,在历史上人们只聚焦于scaling up训练算力,现在通过把CoT能力内化进大模型,我们可以有抓手来scaling up推理算力了。这意味着存在一个全新的维度,能够有效提升大模型的推理能力。



(6)o1模型的不足之处


o1模型的推出,带来的是两极分化的口碑。


一种声音认为o1的出现意味着人类距离AGI只有咫尺之遥,多见于自媒体。


另一种声音认为o1又贵又不好使,其能力表现甚至不如GPT-4。


这里给出我们的判断:o1代表着一个新的提升大模型推理能力的维度,有着较高的价值,但目前距离AGI依然有较大距离。


首先来看这个例子,Jifan Zhang构建了一个数据集叫做《Funny Caption Ranking》,就是从纽约时报中把漫画图拿出来,让AI来取搞笑标题,交由人类进行评分。



结果显示,o1取出的标题,往往没那么有趣,评分甚至不如GPT-4,因此作者认为o1的性能并没有大家说得这么好。


我认为这个论断有失偏颇。就像我们人类也有不同的性格特征,考察一个数学博士的幽默感,未必合理。


OpenAI在官方文档中也提到了这点。o1模型在“reasoning-heavy”类问题中,表现得更加出色,比如数据分析、写代码、做数学题。


但是如果在普通的文本类问题中,o1的表现结果在人类看来,和GPT-4差不多。因此,这个案例中o1表现不佳,是可以理解的。


但是下一个案例中o1的表现,就值得我们重视了。


ARC-AGI是由Google的AI学者François Chollet构建的,他认为目前市面上对AGI的定义是模糊不清的,而真正的AGI应该是:一个能够有效掌握新技能,并解决开放域问题的系统


根据这一定义,他创造了ARC-AGI测试集,专门测试各种AI模型是否真正意义上达到了AGI。


其测试题如下,给出几个图例,让AI从中寻找规则,然后在右边的图中给出答案。对于我们人类而言,从中寻找出规则并不困难。比如在左边的图中,应该在红色的色块边上长出4个黄色色块,在蓝色色块的上下左右长出4个橙色色块,而对于浅蓝色和紫色色块而言,不做变化;再比如右边的图中,应该对输入色块施加向下的重力,得到输出结果。



但是对AI来说,要总结出这样的规则,并且推理出准确的答案,并非易事。


根据测评结果,o1模型的一次通过率为21%,相比GPT-4的9%确实有了明显的提升,但是只和Claude Sonnet 3.5打平,并且距离AGI 85%的门槛,还有不短的距离。


这也说明,o1目前虽然在逻辑推理能力上前进了一大步,但是人类还需要经过更加深入的探索,才能不断逼近AGI的目标。



(7)o1带来的影响与启示


最后来探讨一下OpenAI o1模型给整个行业带来的影响与启示。


首先,逻辑推理能力一直以来都是AI的皇冠,也是目前制约Agent落地的核心障碍。


经过一年多时间的发展,AI Agent一直处于叫好不叫座的状态,因为落地效果不够好。


一个Agent往往涉及多个大模型推理的串并联,如果每次推理的准确率是90%,那么连续10次推理后,成功率是0.9^10 = 34.8%,惨不忍睹。


因此,Agent要想落地,关键在于把每次推理的准确率从90%提升到99%以上,这就涉及到大模型的逻辑推理能力。


o1模型最大的价值在于,它证明了通过RL+MCTS,是可以有效增加LLM逻辑推理能力的。OpenAI就像是一站行业明灯,为产业指明了一条新的方向,这条方向的潜力尚未被充分挖掘,值得投入资源探索。


与此同时,o1本质上是算法及数据的创新,对训练算力的依赖度较低,因此对国内AI公司而言是一个利好。



o1带来的第二个影响在于,提示词工程的重要性在未来可能会快速下降。


在过去一年中,涌现出了大量提示词工程技巧,比如让大模型进行角色扮演,或者对大模型说“你如果回答得好,就给你小费,回答得不好,就给你惩罚”。


通过这些提示词技巧,能够有效增加大模型回答的效果。


但是在未来,我们只需要给大模型提出“准确、清晰、简短有力”的问题,让大模型进行慢思考即可。


过去一年中,不少国内的企业在提示词工程方面下了不少功夫,建设系统,这方面的投入在未来可能是没有太大意义的。


随着提示词工程变得越来越不重要,未来智能体会发挥越来越大的价值,值得重视。



o1带来的第三个影响,也是目前市场并未形成共识的一点,就是:o1模型的背后存在真正意义上的数据飞轮。


OpenAI目前公开的o1模型,在使用的时候,把原始的CoT思维过程隐藏起来了。


根据官方的说法,这么做的原因是为了提升用户体验。但我们认为更主要的原因,是为了保护o1模型产生的数据飞轮。


说到数据飞轮,上一代以ChatGPT为代表的GPT系列模型其实并没有产生数据飞轮效应。


海量用户的使用,并没有让OpenAI积累到足以训练出下一代模型的优质数据,从而扩大竞争优势。相反,一年之后Anthropic、Cohere、Mistral都已经开始接近甚至追平了OpenAI的模型性能。


但是o1模型不太一样。假设一个用户使用o1模型来编写代码或者做数学题。无论代码还是数学,都有一个共性特点,那就是“对就是对,错就是错”,是一个0-1问题。


如果o1模型回答的结果是正确的,那么其推理过程大概率也是正确的。


而一个能够推导出正确结果的推理过程数据,恰恰是目前AI行业最稀缺的优质资源。


如果OpenAI能够善用o1所带来的数据飞轮,将会对其训练下一代o2、o3模型带来巨大帮助。



最后,给出OpenAI o1模型的主创团队清单,除了大名鼎鼎的Ilya之外,还有不少新面孔。


如果大家对于o1模型的技术原理,以及其未来的发展感兴趣的话,非常建议大家去关注他们的账号,这才是真正高质量的一手研究资源。




文章来自于“Alpha Engineer”,坐着“费斌杰”。


关键词: openai , o1 , AI , chatGPT , 人工智能
AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
AI漫画

【开源免费】ai-comic-factory是一个利用AI生成漫画的创作工具。该项目通过大语言模型和扩散模型的组合使用,可以让没有任何绘画基础的用户完成属于自己的漫画创作。

项目地址:https://github.com/jbilcke-hf/ai-comic-factory?tab=readme-ov-file

在线使用:https://aicomicfactory.app/

2
智能体

【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。

项目地址:https://github.com/Significant-Gravitas/AutoGPT


【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。

项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md

3
免费使用GPT-4o

【免费】ffa.chat是一个完全免费的GPT-4o镜像站点,无需魔法付费,即可无限制使用GPT-4o等多个海外模型产品。

在线使用:https://ffa.chat/

4
微调

【开源免费】XTuner 是一个高效、灵活、全能的轻量化大模型微调工具库。它帮助开发者提供一个简单易用的平台,可以对大语言模型(LLM)和多模态图文模型(VLM)进行预训练和轻量级微调。XTuner 支持多种微调算法,如 QLoRA、LoRA 和全量参数微调。

项目地址:https://github.com/InternLM/xtuner

5
prompt

【开源免费】LangGPT 是一个通过结构化和模板化的方法,编写高质量的AI提示词的开源项目。它可以让任何非专业的用户轻松创建高水平的提示词,进而高质量的帮助用户通过AI解决问题。

项目地址:https://github.com/langgptai/LangGPT/blob/main/README_zh.md

在线使用:https://kimi.moonshot.cn/kimiplus/conpg00t7lagbbsfqkq0