ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
北大视频大模型新SOTA,搞笑抖音视频AI秒懂笑点|开源
4684点击    2023-11-21 12:24

AI能理解搞笑视频笑点在哪里了。



AI回答:这个视频之所以搞笑,在于一个小宝宝正坐在床上努力读书,但他显然还不会真正读书。他只是不停地指着书页上的各处,而摄影者则在背后笑他。小宝宝的这种尝试很有趣,因为他在尝试阅读一本对他而言过大的书,也看不懂里面的文字。


北大等团队开源视觉语言大模型Video-LLaVA,将图像和视频表示对齐到统一的视觉特征空间,在13个图片和视频基准上达到先进的性能。



值得注意的是,Video-LLaVA在训练过程中没有使用成对的视频和图片数据,但在训练后,LLM令人惊讶地展现出同时理解图片和视频的能力。


如下图所示,Video-LLaVA成功地识别出自由女神像的图片是近景且细腻的,而视频描述了自由女神像的多个角度,表明它们来自同一个地方。



在投影之前对齐图像和视频表示



这项工作具体贡献如下:


  • Video-LLaVA解决了在视觉-语言理解中同时处理图像和视频的挑战。它将视觉表示统一到语言特征空间中,使得大型语言模型能够同时对图像和视频进行视觉推理能力。
  • Video-LLaVA通过最初将图像和视频的表示对齐到一个统一的视觉特征空间中,将视觉表示统一到语言特征空间中。这是通过使用LanguageBind编码器来实现的,该编码器将不同的模态映射到文本特征空间中,提供了一个统一的视觉表示。然后,统一的视觉表示经过共享的投影层和词嵌入层进行编码,以将统一的视觉表示映射给大型语言模型使用。
  • Video-LLaVA在视频上表现出色,在MSVD、MSRVTT、TGIF和ActivityNet视频问答数据集上分别超过了Video-ChatGPT的5.8%、9.9%、18.6%和10.1%。


对于模型能力,研究团队做了充分实验。


视频理解能力实验。


如表3所示,Video-LLaVA在4个视频问答数据集上全面超过了Video-ChatGPT,并且涨幅相当可观。



图片理解能力实验。


该研究还与InstructBLIP,Otter,mPLUG-owl 等图片语言大模型在图片语言理解任务上进行了比较,结果如表2所示:



为了评估预先对齐视觉输入的效果,研究团队进行了大量的对比实验。


他们使用了相同规模的MAE编码器替换了图片编码器,其中MAE编码器生成分离的视觉表示,而LanguageBind编码器生成统一的视觉表示(因为预先对齐了视觉表征)。


然后,他们在13个基准测试中比较了MAE编码器和LanguageBind编码器的性能,包括9个图片理解基准和4个视频理解基准。



通过替换图片编码器为MAE编码器,LLM在初始学习视觉表示时将视频特征和图片特征分开处理,不再将它们统一起来。


有关图6的实验结果显示,与分离的视觉表示相比,联合的视觉表示在4个视频问答数据集上显著提升了性能。


这一发现表明,预先对齐的视觉表征有助于LLM进一步学习和理解视频内容。它提供了更好的能力,使得模型能够更有效地处理视频问答任务并展现出更好的性能表现。



同时论文还验证了无论是对于图片还是视频,在联合训练中他们能相互受益。


通过联合训练视频数据,对于图片理解任务,可以缓解幻觉问题。类似的趋势也在LLaVA-Bench基准测试上观察到。



在视频理解方面,联合训练的也得到了明显的提升。



参考资料:

[1]https://arxiv.org/abs/2311.10122

[2]https://github.com/PKU-YuanGroup/Video-LLaVA



文章来自微信公众号 “ 量子位 ”,作者 梦晨







AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
AI数据分析

【开源免费】DeepBI是一款AI原生的数据分析平台。DeepBI充分利用大语言模型的能力来探索、查询、可视化和共享来自任何数据源的数据。用户可以使用DeepBI洞察数据并做出数据驱动的决策。

项目地址:https://github.com/DeepInsight-AI/DeepBI?tab=readme-ov-file

本地安装:https://www.deepbi.com/

【开源免费airda(Air Data Agent)是面向数据分析的AI智能体,能够理解数据开发和数据分析需求、根据用户需要让数据可视化。

项目地址:https://github.com/hitsz-ids/airda