AI资讯新闻榜单内容搜索-LLM

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: LLM
最新Agentic Search综述,RL让Agent自主检索,RAG逐渐成为过去式

最新Agentic Search综述,RL让Agent自主检索,RAG逐渐成为过去式

最新Agentic Search综述,RL让Agent自主检索,RAG逐渐成为过去式

大型语言模型(LLM)本身很强大,但知识是静态的,有时会“胡说八道”。为了解决这个问题,我们可以让它去外部知识库(比如维基百科、搜索引擎)里“检索”信息,这就是所谓的“检索增强生成”(RAG)。

来自主题: AI资讯
5680 点击    2025-10-25 14:09
腾讯发布SpecExit算法,无损压缩端到端加速2.5倍!解决大模型长思考效率难题

腾讯发布SpecExit算法,无损压缩端到端加速2.5倍!解决大模型长思考效率难题

腾讯发布SpecExit算法,无损压缩端到端加速2.5倍!解决大模型长思考效率难题

为破解大模型长思维链的效率难题,并且为了更好的端到端加速落地,我们将思考早停与投机采样无缝融合,提出了 SpecExit 方法,利用轻量级草稿模型预测 “退出信号”,在避免额外探测开销的同时将思维链长度缩短 66%,vLLM 上推理端到端加速 2.5 倍。

来自主题: AI技术研报
7146 点击    2025-10-24 16:53
现在,最会赚钱的AI是Qwen3!全球六大模型厮杀,Top 2来自中国

现在,最会赚钱的AI是Qwen3!全球六大模型厮杀,Top 2来自中国

现在,最会赚钱的AI是Qwen3!全球六大模型厮杀,Top 2来自中国

全球六大LLM实盘厮杀,新王登基!今天,Qwen3 Max凭借一波「快狠准」操作,逆袭DeepSeek夺下第一。Qwen3 Max,一骑绝尘! 而GPT-5则接替Gemini 2.5 Pro,成为「最会赔钱」的AI。照目前这个趋势,估计很快就要跌没了……

来自主题: AI资讯
7938 点击    2025-10-23 16:48
AI模型守法率提升11%,港科大首次用法案构建安全benchmark

AI模型守法率提升11%,港科大首次用法案构建安全benchmark

AI模型守法率提升11%,港科大首次用法案构建安全benchmark

香港科技大学KnowComp实验室提出基于《欧盟人工智能法案》和《GDPR》的LLM安全新范式,构建合规测试基准并训练出性能优异的推理模型,为大语言模型安全管理提供了新方向。

来自主题: AI技术研报
8057 点击    2025-10-23 12:20
Embedding黑箱成为历史!这个新框架让模型“先解释,再学Embedding”

Embedding黑箱成为历史!这个新框架让模型“先解释,再学Embedding”

Embedding黑箱成为历史!这个新框架让模型“先解释,再学Embedding”

让模型先解释,再学Embedding! 来自UIUC、ANU、港科大、UW、TAMU等多所高校的研究人员,最新推出可解释的生成式Embedding框架——GRACE。过去几年,文本表征(Text Embedding)模型经历了从BERT到E5、GTE、LLM2Vec,Qwen-Embedding等不断演进的浪潮。这些模型将文本映射为向量空间,用于语义检索、聚类、问答匹配等任务。

来自主题: AI技术研报
6645 点击    2025-10-22 15:00
AI牛马实现“干中学”!上海AI Lab联合推出智能体自我进化新框架

AI牛马实现“干中学”!上海AI Lab联合推出智能体自我进化新框架

AI牛马实现“干中学”!上海AI Lab联合推出智能体自我进化新框架

在人工智能的广阔世界里,我们早已习惯了LLM智能体在各种任务中大放异彩。但有没有那么一瞬间,你觉得这些AI“牛马”还是缺了点什么?

来自主题: AI技术研报
8386 点击    2025-10-22 12:13
豆包是如何炼成的?字节放出自研万卡训练系统ByteRobust论文

豆包是如何炼成的?字节放出自研万卡训练系统ByteRobust论文

豆包是如何炼成的?字节放出自研万卡训练系统ByteRobust论文

近日,字节跳动一篇论文介绍了他们 LLM 训练基础设施 ByteRobust,引发广泛关注。现在,在训练基础设施层面上,我们终于知道字节跳动会如何稳健地训练豆包了。

来自主题: AI技术研报
7965 点击    2025-10-22 09:51
RewardMap: 通过多阶段强化学习解决细粒度视觉推理的Sparse Reward

RewardMap: 通过多阶段强化学习解决细粒度视觉推理的Sparse Reward

RewardMap: 通过多阶段强化学习解决细粒度视觉推理的Sparse Reward

近年来,大语言模型(LLMs)以及多模态大模型(MLLMs)在多种场景理解和复杂推理任务中取得突破性进展。

来自主题: AI技术研报
5534 点击    2025-10-21 15:53
微软BitDistill将LLM压缩到1.58比特:10倍内存节省、2.65倍CPU推理加速

微软BitDistill将LLM压缩到1.58比特:10倍内存节省、2.65倍CPU推理加速

微软BitDistill将LLM压缩到1.58比特:10倍内存节省、2.65倍CPU推理加速

大语言模型(LLM)不仅在推动通用自然语言处理方面发挥了关键作用,更重要的是,它们已成为支撑多种下游应用如推荐、分类和检索的核心引擎。尽管 LLM 具有广泛的适用性,但在下游任务中高效部署仍面临重大挑战。

来自主题: AI技术研报
5865 点击    2025-10-21 11:43