AI资讯新闻榜单内容搜索-LLM

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: LLM
空间智能终极挑战MMSI-Video-Bench来了,顶级大模型全军覆没

空间智能终极挑战MMSI-Video-Bench来了,顶级大模型全军覆没

空间智能终极挑战MMSI-Video-Bench来了,顶级大模型全军覆没

空间理解能力是多模态大语言模型(MLLMs)走向真实物理世界,成为 “通用型智能助手” 的关键基础。但现有的空间智能评测基准往往有两类问题:一类高度依赖模板生成,限制了问题的多样性;另一类仅聚焦于某一种空间任务与受限场景,因此很难全面检验模型在真实世界中对空间的理解与推理能力。

来自主题: AI技术研报
7377 点击    2026-01-06 09:50
字节Seed:大概念模型来了,推理的何必是下一个token

字节Seed:大概念模型来了,推理的何必是下一个token

字节Seed:大概念模型来了,推理的何必是下一个token

LLM的下一个推理单位,何必是Token?刚刚,字节Seed团队发布最新研究——DLCM(Dynamic Large Concept Models)将大模型的推理单位从token(词) 动态且自适应地推到了concept(概念)层级。

来自主题: AI技术研报
9242 点击    2026-01-04 21:01
微信炼出扩散语言模型,实现vLLM部署AR模型3倍加速,低熵场景超10倍

微信炼出扩散语言模型,实现vLLM部署AR模型3倍加速,低熵场景超10倍

微信炼出扩散语言模型,实现vLLM部署AR模型3倍加速,低熵场景超10倍

近日,腾讯微信 AI 团队提出了 WeDLM(WeChat Diffusion Language Model),这是首个在工业级推理引擎(vLLM)优化条件下,推理速度超越同等 AR 模型的扩散语言模型。

来自主题: AI技术研报
9318 点击    2026-01-03 13:56
自回归因果注意力也能并行解码?上交联合UCSD突破LLM推理瓶颈,模型代码全开源

自回归因果注意力也能并行解码?上交联合UCSD突破LLM推理瓶颈,模型代码全开源

自回归因果注意力也能并行解码?上交联合UCSD突破LLM推理瓶颈,模型代码全开源

在大语言模型(LLM)落地应用中,推理速度始终是制约效率的核心瓶颈。传统自回归(AR)解码虽能保证生成质量,却需逐 token 串行计算,速度极为缓慢;扩散型 LLM(dLLMs)虽支持并行解码,却面

来自主题: AI技术研报
7602 点击    2025-12-31 09:21
拖拽式搭建分布式Agent工作流!Maze让非技术人员几分钟搞定复杂任务

拖拽式搭建分布式Agent工作流!Maze让非技术人员几分钟搞定复杂任务

拖拽式搭建分布式Agent工作流!Maze让非技术人员几分钟搞定复杂任务

在大模型智能体(LLM Agent)落地过程中,复杂工作流的高效执行、资源冲突、跨框架兼容、分布式部署等问题一直困扰着开发者。而一款名为Maze的分布式智能体工作流框架,正以任务级精细化管理、智能资源调度、多场景部署支持等核心优势,为这些痛点提供一站式解决方案。

来自主题: AI资讯
8223 点击    2025-12-30 15:14
AI4S回归白盒符号主义,清华等联合发布SR-LLM:自主发现科学知识

AI4S回归白盒符号主义,清华等联合发布SR-LLM:自主发现科学知识

AI4S回归白盒符号主义,清华等联合发布SR-LLM:自主发现科学知识

清华大学等多所高校联合发布SR-LLM,这是一种融合大语言模型与深度强化学习的符号回归框架。它通过检索增强和语义推理,从数据中生成简洁、可解释的数学模型,显著优于现有方法。在跟车行为建模等任务中,SR-LLM不仅复现经典模型,还发现更优新模型,为机器自主科学发现开辟新路径。

来自主题: AI技术研报
9737 点击    2025-12-29 14:37
向量检索爆雷!傅聪联合浙大发布IceBerg Benchmark:HNSW并非最优,评估体系存在严重偏差

向量检索爆雷!傅聪联合浙大发布IceBerg Benchmark:HNSW并非最优,评估体系存在严重偏差

向量检索爆雷!傅聪联合浙大发布IceBerg Benchmark:HNSW并非最优,评估体系存在严重偏差

将多模态数据纳入到RAG,甚至Agent框架,是目前LLM应用领域最火热的主题之一,针对多模态数据最自然的召回方式,便是向量检索。

来自主题: AI技术研报
6608 点击    2025-12-26 09:40
北航提出代码大模型的 Scaling Laws:编程语言差异与多语言最优配比策略

北航提出代码大模型的 Scaling Laws:编程语言差异与多语言最优配比策略

北航提出代码大模型的 Scaling Laws:编程语言差异与多语言最优配比策略

在代码大模型(Code LLMs)的预训练中,行业内长期存在一种惯性思维,即把所有编程语言的代码都视为同质化的文本数据,主要关注数据总量的堆叠。然而,现代软件开发本质上是多语言混合的,不同语言的语法特性、语料规模和应用场景差异巨大。

来自主题: AI技术研报
6777 点击    2025-12-25 09:46
最鲁棒的MLLM!港科大开源「退化感知推理新范式」 | AAAI'26

最鲁棒的MLLM!港科大开源「退化感知推理新范式」 | AAAI'26

最鲁棒的MLLM!港科大开源「退化感知推理新范式」 | AAAI'26

多模态大语言模型(MLLMs)已成为AI视觉理解的核心引擎,但其在真实世界视觉退化(模糊、噪声、遮挡等)下的性能崩溃,始终是制约产业落地的致命瓶颈。

来自主题: AI技术研报
8187 点击    2025-12-25 09:44