HuggingFace发布超200页「实战指南」,从决策到落地「手把手」教你训练大模型
HuggingFace发布超200页「实战指南」,从决策到落地「手把手」教你训练大模型近期,HuggingFace 发布的超过 200 页的超长技术博客,系统性地分享训练先进 LLM 的端到端经验。
近期,HuggingFace 发布的超过 200 页的超长技术博客,系统性地分享训练先进 LLM 的端到端经验。
LLM Agent 正以前所未有的速度发展,从网页浏览、软件开发到具身控制,其强大的自主能力令人瞩目。然而,繁荣的背后也带来了研究的「碎片化」和能力的「天花板」:多数 Agent 在可靠规划、长期记忆、海量工具管理和多智能体协调等方面仍显稚嫩,整个领域仿佛一片广袤却缺乏地图的丛林。
2024年,加州大学圣地亚哥分校「Hao AI Lab」提出了DistServe的解耦推理理念,短短一年多时间,迅速从实验室概念成长为行业标准,被NVIDIA、vLLM等主流大模型推理框架采用,预示着AI正迈向「模块化智能」的新时代。
现有的LLM智能体训练框架都是针对单智能体的,多智能体的“群体强化”仍是一个亟须解决的问题。为了解决这一领域的研究痛点,来自UCSD和英特尔的研究人员,提出了新的提出通用化多智能体强化学习框架——PettingLLMs。支持任意组合的多个LLM一起训练。
近日,谷歌推出了一种全新的用于持续学习的机器学习范式 —— 嵌套学习,模型不再采用静态的训练周期,而是以不同的更新速度在嵌套层中进行学习,即将模型视为一系列嵌套问题的堆叠,使其能够不断学习新技能,同时又不会遗忘旧技能。
众所周知,大型语言模型(LLM)的根本运作方式是预测下一个 token(词元),能够保证生成的连贯性和逻辑性,但这既是 LLM 强大能力的「灵魂」所在,也是其枷锁,将导致高昂的计算成本和响应延迟。 可
这说明o1不仅能够使用语言,还能够思考语言,具备元语言能力(metalinguistic capacity )。由于语言模型只是在预测句子中的下一个单词,人对语言的深层理解在质上有所不同。因此,一些语言学家表示,大模型实际上并没有在处理语言。
著名数学家陶哲轩发论文了,除了陶大神,论文作者还包括 Google DeepMind 高级研究工程师 BOGDAN GEORGIEV 等人。论文展示了 AlphaEvolve 如何作为一种工具,自主发现新的数学构造,并推动人们对长期未解数学难题的理解。AlphaEvolve 是谷歌在今年 5 月发布的一项研究,一个由 LLMs 驱动的革命性进化编码智能体。
近日,专注于研发物质世界基座模型的公司超越对称(上海)技术有限公司(超对称)发布了新版基座模型 BigBang-Proton,成功实现多个真实世界的专业学科问题与 LLM 的统一预训练和推理,挑战了 Sam Altman 和主流的 AGI 技术路线。
伊利诺伊大学厄巴纳 - 香槟分校(UIUC)等团队近日发布论文,系统性剖析了 LLM 智能体失败的机制,并提出了可自我修复的创新框架 ——AgentDebug。该研究认为,AI 智能体应成为自身的观察者和调试者,不仅仅是被动的任务执行者,为未来大规模智能体的可靠运行和自动进化提供了理论与实践工具。