ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
诺奖花落AI领军者:产业AI变革时代来了?
7922点击    2024-10-11 10:46

AI,新世界的“钥匙”


“我们正站在一个新的革命边缘,这场革命的催化剂是AI。其不仅预示着未来科学发现的主导者,更将彻底改变我们对这个世界的认知方式。就像历史上的科学革命一样,AI的发展正在引领我们进入一个全新的时代,其中数据和算法将成为探索未知世界的新工具。”


“I had no idea I’d even been nominated for the Nobel Prize in Physics.(我都没想过会被提名诺贝尔物理奖)”


“How could I be sure it wasn’t a spoof call.(我咋知道你们是不是恶搞我)”


John J. Hopfield和Geoffrey E. Hinton是今年诺贝尔物理奖的获得者。 Hinton听到这个消息时,自己都比较惊讶。 不是因为别的,而是因为他自己是搞AI的,更准确的叫法是:人工神经网络和机器学习


毕竟神经网络乍一听,它确实不物理。



官方的评论区,也是炸了锅。研究物理的、研究AI的、甚至研究生物的,都纷纷陷入了沉默。


中科院物理所公号的评论区,也是讨论的热火朝天。有网友调侃道:“诺奖为什么不给GPT。”



2024年诺贝尔物理学奖的揭晓,将AI在物理学领域的应用推向了高潮。John J. Hopfield和Geoffrey E. Hinton的获奖,不仅是对他们个人成就的认可,更是对AI在解决科学难题中所扮演角色的肯定


一个疑问是,AI为什么会获物理诺奖?这届物理诺奖的“出其不意”背后,到底透露了哪些信息?以及,AI和如今正在进行的产业数字变革有哪些关联?


一 物理学与AI的深层联系


想要知道为什么这俩人能够获得物理诺奖,首先需要搞明白,这俩人究竟做出了哪些成就。


“利用物理学工具,开发出了当今强大机器学习技术的基础方法。”这是评委会表彰时的一段话。从字面上来看,很好理解,即用基于物理打造了AI技术的底层方法论。


霍普菲尔德在1982年创造出联想神经网络,现在通称为霍普菲尔德网络(Hopfield network),可以存储并重现图像和其他数据模式的关联记忆技术;辛顿是反向传播算法和对比散度算法的共同发明者,和深度学习的积极倡导者,被誉为“深度学习教父”或“AI教父”。


我们尝试用通俗易懂的语言来解释两位获奖者的发明。


想象一下,一堆磁铁可以自由地翻转自己的北极和南极。这些磁铁被杂乱无章地放置在一起,但有一种特殊的规则:如果一个磁铁的北极对着另一个磁铁的南极,它们就会互相吸引;反之,如果两个磁铁的同极相对,它们就会互相排斥。这就是所谓的自旋玻璃,一种物理学中的模型,用来描述这种混乱而又相互影响的粒子集合。


现在,用这个想法来构建一个“记忆存储器”。每个小磁铁就像一个神经网络中的神经元,它们可以被设置为活跃(北极)或不活跃(南极)。当你把这些“神经元”放在一起时,它们会互相影响,最终达到一种稳定状态,就像磁铁最终会排列好,使得排斥力最小化一样。


Hopfield网络就是这样一种模仿大脑记忆方式的神经网络。你可以把一些模式(比如一串数字或者一张图片)“教”给这个网络,网络中的“神经元”就会调整自己,以便在未来能够回忆起这个模式。这就像是把一堆磁铁按照特定的方式排列好,然后它们就能记住这种排列,即使被打乱,也能重新恢复。


再谈谈Hinton的发明。


想象一下,一堆乐高积木建造一个复杂的模型。但最终模型的样子并不清晰,不知道如何一步步搭建。这就是训练神经网络时面临的问题:我们有很多数据,我们知道最终想要的结果,但不知道如何调整网络中的连接,以便它能正确地处理数据。


反向传播算法就是一种解决方法。它就像是一个可以撤销错误步骤的工具。每次搭错了一块积木,这个工具就能让搭建者回到上一步,调整积木的位置,不断尝试。通过不断地试错和调整,最终搭建出正确的模型。在神经网络中,这意味着可以逐步调整网络中的连接,以便它能够正确地识别数据中的模式。


玻尔兹曼机则是另一种灵感来源于物理学的神经网络。它使用了统计物理学中的一个概念,即在一定温度下,粒子会以某种概率处于不同的状态。在玻尔兹曼机中,每个“神经元”就像一个粒子,它们可以处于活跃或不活跃的状态,并且这些状态会根据网络中的整体能量状态来调整。通过这种方式,网络可以学习如何从数据中提取有用的信息,就像统计物理学帮助我们理解粒子的行为一样。


简而言之,Hopfield网络和Hinton的工作都是将物理学的概念应用于神经网络,以模拟大脑的工作方式,让计算机能够学习、记忆和识别复杂的数据模式。


更重要的是,Hopfield、Hinton展示了物理学原理如何被应用于理解和模拟大脑的工作方式,这是一种跨学科的创新。这种创新不仅推动了AI技术的发展,也为物理学提供了新的研究工具和视角。


二 AI——科学难题的“万能钥匙”


当下的AI技术,不仅仅是技术的革新,更是思维方式的革命。


AI技术,特别是深度学习和大模型,已经在多个科学领域展现出强大的模式识别和数据处理能力。这种能力不仅加速了科学研究的进程,还使得科学家能够探索数据海洋中的微小细节,发现隐藏的规律


通过深度学习算法,AI能够分析和解释复杂的物理现象,如粒子物理学中的高能碰撞数据。这种分析能力使得科学家能够更快地识别新的粒子和物理现象,加速了理论物理学的发展


AI能够预测蛋白质的三维结构,这对于理解生命的本质和开发新药至关重要。AI的预测能力,让曾经需要数年甚至数十年的实验工作,缩短到了数周甚至数天。


AI还能够预测分子和化学反应的行为,加速新材料和药物的发现。这些应用表明,AI已经成为科学研究的加速器和创新的催化剂。


AI的影响力不仅限于物理学、生物学和化学,它还在医学、天文学等领域展现出巨大的潜力。AI的跨学科特性,使得它能够连接不同领域的数据和知识,推动科学发现的边界不断扩展。这种跨学科的合作模式,预示着AI将成为未来科学研究的核心力量。


然而,AI并非万能。它的能力建立在大量数据的基础上,而这些数据的质量和完整性直接影响AI的判断。


此外,AI的决策过程往往是一个“黑箱”,其内部的逻辑和推理过程对于人类来说并不透明。这引发了对AI可靠性和道德责任的质疑。AI的这种“黑箱”特性,使得我们难以完全信任其输出的结果,尤其是在关乎生命安全的医疗领域。


尽管存在挑战,AI作为科学难题的“万能钥匙”的角色不可或缺。它正在推动科学研究进入一个新的时代,一个由数据驱动、由算法优化的时代


三 用AI,重新理解产业


我们正站在一个新的革命边缘,这场革命的催化剂是AI。其不仅预示着未来科学发现的主导者,更将彻底改变我们对这个世界的认知方式。就像历史上的科学革命一样,AI的发展正在引领我们进入一个全新的时代,其中数据和算法将成为探索未知世界的新工具。


AI的应用也促进了跨学科研究的兴起,因为它能够连接不同领域的数据和知识,推动新的科学发现。这种跨学科的合作模式,不仅加速了知识的积累,也为解决复杂问题提供了新的视角。


更重要的是,AI正在颠覆我们理解世界的方式。它提供了新的视角来观察和理解世界,比如通过分析社交媒体数据,我们可以更好地理解社会趋势和人类行为。AI的预测和模拟能力也在改变我们对某些现象的理解和预测方式,例如模拟气候变化,帮助我们理解全球变暖的影响。同时,AI也在帮助人类做出更智能的决策,无论是在金融领域的市场趋势预测,还是在交通领域的路线优化规划。


如今,在各个服务商的加持下,AI技术也在不断赋能各个产业。从电商到金融,再到工业,不断渗透,推动产业的智能化升级


在电商领域,AI技术的应用已经相当成熟。例如,京东的京言AI助手能够提供商品的专业知识解答,帮助消费者了解不同品类商品的特点和选购要点,同时提供个性化推荐、产品对比等服务。阿里巴巴的阿里小蜜则通过自然语言处理技术和大数据分析,自动化解决大部分常见问题,提供一站式服务,并支持多种接入方式。


金融行业也是AI应用的热点领域。恒生电子推出的金融智能助手“光子”,能够整合金融相关的数据处理、分析和决策支持功能,提供专业的金融服务咨询,同时帮助自动化执行一些常规的后台操作,如账户管理、交易处理等。


在工业领域,AI技术的应用正推动着制造业的智能化转型。AI技术在生产过程中的应用体现在实时数据收集与分析、预测性维护、智能排产等方面,提高生产效率和生产线的稳定性。同时,AI技术还助力节能减排,通过智能优化与控制能源使用,降低能耗和排放。在物体分拣、质检和仓储自动化等环节,AI技术的应用也显著提升了效率和准确性。


此外,AI技术还助力销售管理升级,精准预测销售趋势,优化销售策略,提升客户服务,实现高效、个性化的市场运营。例如,通过AI的销售预测分析,企业能够减少库存积压风险,提高资金周转率。


总体来看,AI技术在产业数字化转型中的应用正不断拓展,不仅提高了生产效率和运营效率,还促进了产业结构的优化升级。随着技术的不断进步和应用的深入,预计AI将在更多领域催生出真正的“原生应用”,推动经济社会的创新发展。


随着AI的发展,我们的生活方式、工作方式以及对世界的认知都在发生根本性的变化。这场由AI驱动的科学革命,不仅仅是技术层面的革新,它更深层次地影响着我们的社会结构和文化发展。


未来,AI可能会带来根本性的变化,开启一个新的时代,让我们以前所未有的方式探索未知,解决难题,理解这个世界的复杂性。


文章来自于“产业家”,作者“斗斗”。