ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
鹅厂,悄咪咪上线了个 AI 智能工作台
2805点击    2024-10-28 09:40

就在刚刚过去的这周中,特工关注到一个刚刚对外发布上线的 AI 应用,名叫 ima.copilot,来自鹅厂 PCG 团队。


目前产品仅支持 Mac 端,在官网即可下载体验。


ima copilot 的产品定位是个人知识助理和效率工具,属于大模型应用的理性慢思考类型。


产品的 slogan 叫做「智慧因你而生」,「会思考的知识库,开启搜读写新体验」;从中可以看出,其价值目标是利用大模型通用知识,加上用户个性化知识,为用户在搜索、阅读、写作场景提高效率和提供洞察。


https://ima.qq.com/


ima copilot 主要有三大功能模块,分别是搜索、知识库、笔记


一、搜索模块


ima 可以直接提问基于全网资料搜索,也可以基于个人知识库搜索;搜索时支持截图识别或上传最多 10 个文件。


AI 搜索的整体体验较好,达到了市面上同类搜索产品的体验预期。回答内容准确、结构清晰,有参考资料列表以及文内引用,点击资料可在产品内直接打开链接阅读原文,并将原文添加进知识库




除此之外,在回答下方,除了有相关度高的发散引导追问,还可一键生成思维导图、一键将回答添加至新的笔记



二、知识库模块


知识库首页呈现的是所有从本地添加的文件或从端内保存的笔记,还可以对知识库的每篇内容编辑标签,知识库右侧还有可以快速唤醒的 copilot 模式的核心问答功能。



知识库内也有 AI 搜索入口,可以基于知识库内容进行问答。



三、笔记模块


除了上述有提到的,可以将 AI 回答内容和链接原文内容一键添加到笔记内,ima 笔记重点有写作功能和解读功能。


在首页点击「智能写作」,可以看到有论文、作文、文案的类型模板,满足学习和生产的内容诉求;用户除了输入主题要求,还可以从本地或知识库添加参考文档给大模型作为内容生成的范例。



新建一篇笔记后,输入斜杠「/」即可快速唤起 AI 辅助创作。



对已有的内容,用户可以鼠标选中后,打开 ima 对内容作解读,或者使用 AI 写作的扩写、缩写、多语言翻译功能,实现高效编辑修改内容的目标。



ima 首页还可以添加知识库文档作 AI 解读;甚至当用户在本地的 finder 文件夹挪动文件时,都会触发快截入口,提示可以将本地文件拖动到 ima 里作解读。



在体验下来,我们也斗胆提一些拙见(目前产品刚刚上线,还有一些进步空间,相信未来会优化地很好的!)


目前点击左侧边栏的「知识库」和「笔记」功能入口,每次都会打开一个新的页面,与预期进入知识库或笔记功能的一个固定的首页、然后再点击进入具体某条内容不一致,造成产品顶部有多个页面标签,体验上有些重复冗余,有一定迷惑;希望能有更好的固定的总-分结构感。



在知识库模块,目前从端外添加知识库文档,只能来自于本地文件;将来如果可以打通腾讯生态体系内的内容,如可支持添加腾讯文档、公众号文章、腾讯会议纪要,将会有更灵活的形态格式,给用户更高的便捷度和内容丰富度。


知识库里的内容标签,目前也只能用人工手动编辑,并且暂未支持按标签筛选内容或串联相关内容;而一些产品如 flomo 可以根据对标签及内容的理解,已经可以用 AI 搜寻提取联想到的内容,更接近人类思维的发散性和关联性、带来启发。


个人知识库本质是用 RAG 技术,把用户的个人知识,通过向量化存储嵌入,挂载给大模型,必要时从中检索并最终生成,给通用大模型添加“记忆”,补充特定垂直和个性化场景的数据。


但在真实生活中,人类处理信息除了会对内容标签化分类,还会根据对个人目标的影响、相关对接人的属性,将信息区分长短期价值、区分重要紧急程度;结构化存储记录内容,是为了从内容中更好地抽取使用可消费的信息。


所以产品后续也许可以考虑,在当前知识库的基础上,更完善地做一个用户的第二大脑,不仅是往记忆外挂库里放内容贴标签,更可对内容构建更丰富的维度和梯度,从而更接近用户的思维习惯、行动方式。



在笔记模块,笔者体验 AI 对内容深度解读时,ima 的解读回答内容中,似乎露出了 prompt 的人设,虽然从写 prompt 角度,这个角色可以对内容质量有好处,但人设与 ima 本身不符,还是让用户感到出戏。


另外,将 ima 与个人 AI 助手 Me.bot 相比,同样地,Me.bot 也主打以“个人记忆”为切入点,塑造一个与用户共生的 AI,让大模型与用户一起经历生活中的方方面面,通过用户向 AI 随时随地分享内容想法,让模型也逐渐向这个人学习训练,模型在不断更新中学会接近用户的“思考”方式。


ima 也在这一方向探索践行,但不同之处在于,目前 ima 优先只做了桌面端,推测还是以工作学习的场景为主,接近用户效率理性的一面,而不是多元立体的个人,并且目前还没有执行任务、自我反思这些完善的体系化的 AI Agent 功能,期待团队后续的产品规划。


特工女巫在体验中还发现一处细节。


在一个全网搜索的 case 中,12 篇引用的参考资料里,有 8 篇来自微信公众号文章,其余有来自百度文库、搜狐等网站的信息,由此可以看出独特的信息数据源之于 AI 应用的重要意义。


现在市场上各互联网大厂和大模型厂商,都在大模型应用层赛道尝试发力,这考察的是基础模型能力、数据的量和质、以及产品力;各家有所擅长或不足的高下,业内也众说纷纭。


从 ima 来看,其接入的是混元大模型,据悉模型已经公司内和社会外的测评检验位列国内第一梯队;数据层面,腾讯有丰富的公众号文章、浏览器搜索内容,甚至个人的文档、会议内容等,有很多融会贯通的空间;产品力的优势,也可以从 ima 整体环环相扣的结构体系、便捷开放的功能入口中窥见一隅,当然产品刚刚问世,团队也正密切重视用户反馈以优化体验细节。


腾讯推出 ima 个人 AI 知识助理,是在大模型应用向个性化价值、慢思考长期价值的探索。


通过个人知识库构建个性化数据,LLM 在通用知识的基础上,变得更懂用户个体,让过往分散零碎的个人知识变得有结构体系,为用户提高信息获取和处理的效率,并在已知信息基础上提炼新的洞察见解。


文章来自于微信公众号“特工宇宙”,作者“ 特工女巫”


关键词: AI , AI智能平台 , ima.copilot , ima
AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
智能体

【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。

项目地址:https://github.com/Significant-Gravitas/AutoGPT


【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。

项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md

2
知识库

【开源免费】FASTGPT是基于LLM的知识库开源项目,提供开箱即用的数据处理、模型调用等能力。整体功能和“Dify”“RAGFlow”项目类似。很多接入微信,飞书的AI项目都基于该项目二次开发。

项目地址:https://github.com/labring/FastGPT

3
RAG

【开源免费】graphrag是微软推出的RAG项目,与传统的通过 RAG 方法使用向量相似性作为搜索技术不同,GraphRAG是使用知识图谱在推理复杂信息时大幅提高问答性能。

项目地址:https://github.com/microsoft/graphrag

【开源免费】Dify是最早一批实现RAG,Agent,模型管理等一站式AI开发的工具平台,并且项目方一直持续维护。其中在任务编排方面相对领先对手,可以帮助研发实现像字节扣子那样的功能。

项目地址:https://github.com/langgenius/dify


【开源免费】RAGFlow是和Dify类似的开源项目,该项目在大文件解析方面做的更出色,拓展编排方面相对弱一些。

项目地址:https://github.com/infiniflow/ragflow/tree/main


【开源免费】phidata是一个可以实现将数据转化成向量存储,并通过AI实现RAG功能的项目

项目地址:https://github.com/phidatahq/phidata


【开源免费】TaskingAI 是一个提供RAG,Agent,大模型管理等AI项目开发的工具平台,比LangChain更强大的中间件AI平台工具。

项目地址:https://github.com/TaskingAI/TaskingAI

4
prompt

【开源免费】LangGPT 是一个通过结构化和模板化的方法,编写高质量的AI提示词的开源项目。它可以让任何非专业的用户轻松创建高水平的提示词,进而高质量的帮助用户通过AI解决问题。

项目地址:https://github.com/langgptai/LangGPT/blob/main/README_zh.md

在线使用:https://kimi.moonshot.cn/kimiplus/conpg00t7lagbbsfqkq0