ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
会起标题、能排版,编辑部被AI包围了。
6522点击    2024-11-14 10:56

不瞒大家说, AI 已经全面融入差评了。


当然,并不是说现在这篇稿子,就是用 AI 生成的,而是 AI 已经帮编辑部解决了不少那些看似简单,但却确实有些关键的要紧事儿。


就比如大伙们可能想不到,虽然差评编辑部日常的工作的是拖写稿,但在几年前,咱们公司里其实是有专职的程序员的。


特别是在公众号后台排版时,差评有自己专属排版格式,但秀米这类的工具第三方其实不够用,程序小哥就给咱顺手开发了个排版插件,能一键排版。



后面因为业务调整,插件暂时也没啥 BUG 要修,头发越来越茂密的程序员小哥,也选择了离开。


但后面的几年,咱们的排版格式每年都在更新,微信后台也在各种改版,随着时间的推移,这个插件越来越难满足大家的需求,各种小 BUG 也冒了出来。


一方面编辑部同事们的代码水平不够硬,另一方面相比市面上的其他产品,这个插件依旧是最接近差评文章格式要求的工具。


所以,就连程序员小哥自己都没想到,自个儿已经离职了三年,我们还在继续用着这个插件。



而在去年的年底,在后程序员时代,我们终于给这个排版插件,来了一次迟到的更新。


当然,编辑部并不是花钱重新请了个程序员,也不是编辑们的代码水平突飞猛进,而是一位完全对代码零基础的同事,抱着试一试的心态,用 AI 写了代码,上架了 Chrome 应用商店,完成了这一波更新。


而现在,我们都称他为差评张小龙。


只能说谁也没想到,一直在 Debug the world 的我们,最后却靠着 AI Debug 了差评自己的 Bug 。。。



另外,编辑部其实还一直有个甜蜜的烦恼,困扰了大家好多年。


大伙们都知道,公众号自带的搜索功能突出的,就是一个进步空间巨大。


不仅文章不好搜索,数据阅读量超过十万的文章,公众号在前台还只会显示 10w+ ,具体的阅读是十万加多少,就必须登录微信的公众号后台查看。


但差评公众号天天十万加,再加上编辑团队人数也越来越多,后台权限绑定的人数其实是有限的,寻找相应文章和阅读量数据,就变得麻烦了起来。


所以,当某个编辑忘记某篇文章的阅读量时,一般就只好让有后台的权限的同事帮忙看一眼数据,或者是帮忙扫个码。


最后同样是 AI ,解决了这个甜蜜的烦恼。


因为我们直接用一句话,用百度智能云千帆大模型平台的 AppBuilder ,做了个 “ 文章闪电搜索器 ” 。



我们只要把运营同事那边汇总好的 Excel 数据,加入数据库中,这个文章闪电搜索器,就成了个差评公众号内部数据通。



而且方便的是,我们可以选择把这个 Agent 发布到微信小程序、网页、微信订阅号等等的平台上。


突出得那叫一个想用即用。



世超也通过微信小程序的入口,简单试了试这个用几分钟就搭好的 Demo 。


在世超的提问下,文章闪电搜索器很快就给出了正确答案,《 火了 6 年后,国潮开始塌房了。 》这篇文章阅读量到了 120 多万,包括链接也是正确的。



并且,因为千帆 AppBuilder 记忆能力,咱还能继续追问 “ 该作者上一篇百万加的文章是哪篇 ” ?


文章闪电搜索器也是突出一个快,立马给出了正确答案。



而同样的 AI 故事,其实也发生在差评的 B 站视频部门。


这么说吧,虽然差评君的视频看起来那叫一个靓仔,但咱们的同事在写稿,特别是起标题时,常常那叫一个狼狈。


不夸张地说,写文章 2 小时,纠结标题要花 3 小时的情况那是经常的事情。



这时候,如果有个能起标题的大模型,其实能省不少力,最起码也能启发我们一些起标题的新角度。


于是乎, B 站差评君部门,就想到了用千帆大模型平台的 Modelbuilder ,调教出一个适合 B 站这个平台的起标题大模型。



首先,世超准备给大家讲讲精调大模型的必要性,就像很多行业里都有自己的黑话一样,外行常常是听得一头雾水。


AI 其实也这样,对于外行 AI 而言,可能就不明白差评的火锅是啥意思。



而经过精调的大模型,则会和十年老粉一样,理解差评的一些黑话。



同样在很多情况下,通用的 AI 不太懂什么是好的标题,或者说不太清楚哪些标题是适合 B 站,哪些标题是适合其他平台的。


就比如《 仿生医疗设备: 从蚊子口器到人类健康 》这标题,我觉得比起视频平台,更适合发知网。



所以,我们抓取了 B 站 1300 条热门视频的内容和标题数据,通过千帆训练了个 B 站起标题懂哥大模型。


大伙们也可以对比一下,相比没经过调教的版本,新模型给出的标题,明显就更加对味儿了。


当然,说实话 1000 条左右的数据,并不算多,相信随着数据集的扩大,效果也会越来越好。



其实,通过上面几个世超身边实际的案例,大家也应该会发现,即便是差评这么一个小小的编辑部,对于 AI 也都有着各种各样的需求,更不用说其他无数中小企业了,并不是用一个 TO C 的通用聊天机器人,就能解决一切问题的。


但比如说提示词咋写,如何精调模型,应用的能力不给力怎么办等等,都是行业内在用大模型时,普遍存在的问题。


而在体验百度智能云千帆的 AppBuilder 和 Modelbuilder 过程中,世超也看到了百度是怎么一一解题的。



比如大伙们都担心提示词写不好,影响了最终的效果,而千帆直接预置近 300 个行业场景的 prompt 模版。不知道咋精调模型?千帆也直接给了开箱即用的模型精调样板间,支持超过 3 万个模型的精调。


另外在传统企业中,那些复杂的事儿和任务,基本都得靠专家的经验固定好的流程,也就是工作流。哪怕数字化已经搞了这么多年的今天,工作流也依旧是守旧派,没什么新突破。


另一方面大模型确实是很强,相当于一颗会思考的大脑,但 “ 幻觉 ” 问题却一直让人头疼。相信大伙们也都想到了,把工作流和大模型整一块儿,其实刚好能取其长避其短。


这次百度世界大会上,百度智能云千帆大模型平台搞出了个 “ 工作流 Agent” 的功能。通过学习各种企业流程与规范,工作流 Agent 能迅速适应不同岗位职责,并且快速复制出一个个 “ 数字员工 ” 。



拿保险行业来说吧,百度智能云正和保险公司合作,弄出个车险续保售前的数字员工。以前培养一个员工得花一两年时间。现在用工作流 Agent 开发金牌销售数字员工,最快一个小时就能弄好上线。而且这个工作流 Agent 还能很快地集成到百度搜索、微信公众号、企业官网这些业务系统里。


大会上百度也来了波现场演示 ,咋说呢,要不是事先知道答案,我还真猜不出对面原来是个 AI 数字员工。。。



另外说起来你们可能不信,因为有了数据飞轮和模型蒸馏的加持,这大模型还会越用越聪明,越用效率越高。


这么说吧,模型上线后会持续从线上采样用户线上真实的数据,模型会标注好回答的好坏,用于继续推进模型的更新,数据的轮子,就这么转了起来。



包括 ModelBuilder 还能根据优质的数据,蒸馏出一个轻量级大模型,目前百度优选就用上了,它提取商品属性,新模型能达到 90% 的旗舰级模型效果,同时也能达到 3-4 倍的旗舰级模型的速度,效果和性能就这样达成了平衡。


最后世超想说的是,在大模型到应用的这条路上,实际上很多中小企业,都被拦在了 “ 最后一公里 ” ,而千帆们所做的,就是把这最后的路打通。


硅谷有一句经典的 “ 老话 ” ,叫做 “ 软件吞噬世界 ” 。


而世超觉得,世界会不会被软件吞噬咱不好确定,但在 AI 的普及,并且从 AI 到应用这条路越来越通畅的情况下,软件肯定会让咱们的生活和生产更便利。


文章来自于“差评X.PIN”,作者“江江”。




AITNT资源拓展
根据文章内容,系统为您匹配了更有价值的资源信息。内容由AI生成,仅供参考
1
AI工作流

【开源免费】n8n是一个可以自定义工作流的AI项目,它提供了200个工作节点来帮助用户实现工作流的编排。

项目地址:https://github.com/n8n-io/n8n

在线使用:https://n8n.io/(付费)


【开源免费】DB-GPT是一个AI原生数据应用开发框架,它提供开发多模型管理(SMMF)、Text2SQL效果优化、RAG框架以及优化、Multi-Agents框架协作、AWEL(智能体工作流编排)等多种技术能力,让围绕数据库构建大模型应用更简单、更方便。

项目地址:https://github.com/eosphoros-ai/DB-GPT?tab=readme-ov-file



【开源免费】VectorVein是一个不需要任何编程基础,任何人都能用的AI工作流编辑工具。你可以将复杂的工作分解成多个步骤,并通过VectorVein固定并让AI依次完成。VectorVein是字节coze的平替产品。

项目地址:https://github.com/AndersonBY/vector-vein?tab=readme-ov-file

在线使用:https://vectorvein.ai/(付费)

2
智能体

【开源免费】AutoGPT是一个允许用户创建和运行智能体的(AI Agents)项目。用户创建的智能体能够自动执行各种任务,从而让AI有步骤的去解决实际问题。

项目地址:https://github.com/Significant-Gravitas/AutoGPT


【开源免费】MetaGPT是一个“软件开发公司”的智能体项目,只需要输入一句话的老板需求,MetaGPT即可输出用户故事 / 竞品分析 / 需求 / 数据结构 / APIs / 文件等软件开发的相关内容。MetaGPT内置了各种AI角色,包括产品经理 / 架构师 / 项目经理 / 工程师,MetaGPT提供了一个精心调配的软件公司研发全过程的SOP。

项目地址:https://github.com/geekan/MetaGPT/blob/main/docs/README_CN.md

3
prompt

【开源免费】LangGPT 是一个通过结构化和模板化的方法,编写高质量的AI提示词的开源项目。它可以让任何非专业的用户轻松创建高水平的提示词,进而高质量的帮助用户通过AI解决问题。

项目地址:https://github.com/langgptai/LangGPT/blob/main/README_zh.md

在线使用:https://kimi.moonshot.cn/kimiplus/conpg00t7lagbbsfqkq0