ChatGPT 人工智能 GPT4 伦理 生成式 医疗 监管 安全 机器学习 深度学习 神经网络 计算机视觉 强化学习 模型 算法 应用 开发 研究 工具 平台 框架 数据集 训练 部署 安全 合规 培训 投资 LLM,llm AI,ai,Ai 大模型 大语言模型 制图 生图 绘图 文生图 文生视频 生成式AI AGI 世界模型 sora chatGPT,chatgpt,ChatGpt claude openai Llama deepseek midjourney 红熊猫模型 Red panda,panda Stable Diffusion,StableDiffusion,stable DALL- E 3 DALL E DALL Flux,flux 扩散模型 混元大模型 文心一言 通义千问 可灵 Pika PixelDance 豆包 月之暗面 零一万物 阶跃星辰 搜索增强 MiniMax Talkie Agent prompt fastai LangChain TTS 微调 提示词 知识库 智能体
# 热门搜索 #
搜索
112页报告深挖GPT-4V!UCLA等发布全新「多模态数学推理」基准MathVista
8622点击    2023-12-05 17:15


大型多模态模型会做数学题吗?在UCLA等机构最新发布的MathVista基准上,即使是当前最强的GPT-4V也会感到「挫败感」。


最近,UCLA等机构发布了一个名为MathVista的全新多模态数学推理基准数据集,同时提供了一份涵盖112页的详细评测报告,专注于大型多模态模型的数学推理表现。


  

论文地址:https://arxiv.org/abs/2310.02255


项目地址:https://mathvista.github.io/


HF数据集:https://huggingface.co/datasets/AI4Math/MathVista


数据可视化:https://mathvista.github.io/#visualization


Leaderboard:https://mathvista.github.io/#leaderboard



数学推理能力被视为实现通用人工智能的关键一步。


除了传统的纯文字场景,许多数学研究和应用还涉及到丰富的图形内容,这为模型的多模态处理能力提出了更高的要求。


数学问题的历史悠久,可以追溯到公元前2000年的美索不达米亚。那时的人们就已经使用泥板来记录包含梯形和三角形的数学问题。


研究显示,早在希腊哲学家毕达哥拉斯生活之前,他们就掌握了毕达哥拉斯定理——也就是著名的勾股定理。



中国古代数学的杰作《周髀算经》中不仅包含了勾股定理的优雅证明,也展示了我们祖先在数学领域的深厚造诣。



从小接受的数学教育中,我们经常看到各种生动有趣的图形,这些都强调了视觉元素在数学理解中的重要性。



在现代科学研究中,对大量图像数据进行数学分析成为了一个不可或缺的环节。


尤其是随着大型语言模型(LLMs)和大型多模态模型(LMMs)的发展,这些模型在多种任务和领域中展现出令人印象深刻的问题解决能力。



然而,这些模型在视觉场景下的数学推理能力尚未被系统地研究。


为了探索这一领域,加州大学洛杉矶分校(UCLA)、华盛顿大学(UW)和微软共同开发了全新的MathVista基准数据集。


这个数据集结合了多种数学和视觉任务的挑战,包含6141个问题,来源于28个现有的多模态数据集和3个新标注的数据集,包括IQTest、FunctionQA和PaperQA。MathVista中丰富的任务类型、推理方式和图像类型对现有的大型模型构成了巨大挑战。


研究报告对12个最新的大型模型进行了全面评估。实验结果显示,目前性能最强的GPT-4V在MathVista上达到了49.9%的准确率,显著优于排名第二的Bard模型,领先了15.1%。


然而,与人类表现相比,GPT-4V仍有10.4%的差距。这种差异主要是由于它在理解复杂图形和进行严密推理方面的不足。



此外,报告还进一步探讨了GPT-4V的自我验证能力、自洽性,以及其处理多轮对话的潜力。


这些分析强调了未来研究的多个方向,尤其是在提高模型在复杂情境下的理解和推理能力方面。


MathVista基准数据集


尽管目前已有多个文本为主的数学推理数据集和多模态问答数据集,但在全面评估大型模型在数学推理领域的能力方面,特别是在多模态数据集方面,仍存在显著的空白。


为此,研究团队提出了MathVista数据集,聚焦于视觉场景下的数学问答任务。MathVista包含6141个数学问题,来自于28个现有数据集和3个新标注数据集——IQTest、FunctionQA和PaperQA。



这三个新标注的数据集各有特色:IQTest侧重于智力测试题,FunctionQA专注于函数图形的推理,而PaperQA则关注于对文献中的图表进行深入理解,有效地弥补了现有数据集的不足。



MathVista覆盖了两种主要的任务类型:多选题(占比55.2%)和数值型开放题(占比44.8%)。


它还包括五大任务类别:图形问答(FQA)、几何解题(GPS)、数学应用题(MWP)、教材问答(TQA)和视觉问答(VQA),这些任务类别代表了当前数学推理领域的前沿挑战。



MathVista中的数学推理能力与图像多样性


MathVista细分并定义了数学推理的七大能力领域,包括:算术、统计、代数、几何、数值常识、科学和逻辑。


这些领域涵盖了数学推理的核心要素,体现了MathVista在数学认知范围的全面覆盖。




在图像类型的多样性方面,MathVista也展现了其独特的广度和深度。该数据集包含了十余种不同的图像类型,从自然图像到几何图表,从抽象场景到合成场景,以及各种图形、图表和绘图。


这种丰富的图像类型不仅增加了数据集的复杂性,也为大型多模态模型在处理不同类型的视觉信息时提供了全面的挑战。







全面的量化评估


研究报告首次对当前大型模型在视觉场景下的数学推理能力进行了全面的量化评估。报告中使用的MathVista数据集分为两个子集:minitest和test


minitest子集含有1000个问题,主要用于快速评估模型性能。而test子集则包含剩余的5141个问题,旨在进行模型的标准化评估,因此为了避免测试数据污染,该子集的答案标签数据不对外公开。


模型评估过程分为三个关键阶段:生成回答、抽取答案和计算分数。在生成回答阶段,根据测试问题的类型,研究团队使用了特定的模板来引导模型输出答案。



考虑到当前大型模型通常以对话形式输出长文本回答,报告中的实验设计了一个基于GPT-4的答案抽取器。这个抽取器通过几个实例提示GPT-4,从模型的长文本回答中抽取出符合题目类型的短答案。


这种方法有效地克服了传统人工评估的高成本问题和基于规则的答案抽取可能导致的不准确性。


随后,这些抽取出来的短文本答案被用于计算模型的总体准确率以及在不同子分类别下的准确率。



MathVista上的大型模型评估实验


实验在testmini子集上评估了12种大模型:包括 ChatGPT、GPT-4和Claude-2等三个大型语言模型,以及LLaVA、LLaMA-Adapter、miniGPT-4、Bard和GPT-4V等9种大型多模态模型。


对于大型语言模型,实验设计了两种形式,第一种只利用问题的文字信息,第二种是使用图片的Captioning描述和OCR文作为外部增强信息。


此外,实验还完成了两种随机基准和人类表现基准。



实验结果显示,当前的大模型在MathVista上的整体表现仍有待提升。表现最佳的GPT-4V模型达到了49.9%的准确率,但这与人类的60.3%表现相比还有显著差距。


其次是Bard模型,准确率为34.8%,而目前最好的开源模型LLaVA的准确率则为26.1%。这些数据表明,大型模型在视觉背景下的数学推理能力还有很大的提升空间。


有趣的是,当结合图像OCR和Captioning信息时,大型语言模型GPT-4的表现(33.9%)接近于多模态模型Bard(34.8%)。这一发现显示,通过适当的工具增强,大型语言模型在多模态领域具有巨大的潜力。


实验还对主要模型在不同数学推理能力和图像类型子类上的表现进行了量化评估。结果显示,GPT-4V在诸如代数、几何和科学领域的推理能力上,以及在处理表格、函数图、几何图像、散点图和科学图形等图像类型时,其表现接近甚至超过了人类。



在test子集的评估中,实验比较了最佳的两个大型语言模型(CoT/PoT GPT-4)和最好的开源大型多模态模型(LLaVA),提供了一个全面的模型性能概览。



Bard在MathVista中的表现


在MathVista上的评估显示,Bard模型的总体表现紧随GPT-4之后。


通过具体案例分析,报告发现Bard模型经常产生所谓的「幻觉现象」,即在生成的答案中引入了问题文本和图片中不存在的信息。


此外,Bard在进行数学运算时也容易出现错误。



例如,在下面的例子中,Bard在简化分式8/10的过程中犯了计算错误。这种问题突显了模型在处理数学问题时的局限性。



GPT-4在MathVista上的表现


虽然GPT-4本质上是一种语言模型,但通过工具增强(例如OCR文字和captioning描述的结合),它在MathVista上的性能可以达到与多模态模型Bard相当的水平。


具体来说,当引入这些图片的OCR文字和Captioning描述作为辅助输入信息时,GPT-4能够成功解决许多多模态数学问题。这一发现显示了GPT-4在多模态问题处理方面的潜力。


然而,GPT-4对这些增强信息的准确性有着极高的依赖性。如果这些OCR文字或Captioning描述存在错误或不准确性,GPT-4在推理过程中就很容易走向错误的方向,从而导致不正确的结果。这一点凸显了在使用工具增强大型语言模型时,输入信息质量的重要性。



GPT-4V在MathVista上的全方位分析


GPT-4V作为目前最先进的大型多模态模型,对其能力的深入分析对未来的研究具有重要意义。


报告通过大量实例详尽分析了GPT-4V在不同维度的能力,特别是在自我验证、自洽性和多轮对话方面的巨大潜力。


代数推理能力:在MathVista的代数问题中,GPT-4V展现了理解图像中函数并推断其性质的出色能力,甚至超过了其他大型模型和人类。


但在处理低分辨率图像和多函数图像时,GPT-4V仍面临挑战。



数值计算能力:MathVista中的算术问题不仅需要准确的基础运算,还需理解多样化视觉场景。


如下图所示,GPT-4V在此方面相比现有模型表现出显著的提升。



几何推理能力:在几何推理方面,GPT-4V在MathVista上的表现与人类相当。


在以下两个例子中,无论是小学难度还是高年级难度的问题,GPT-4V均能给出正确答案,并附有详细解释。



逻辑推理能力:在MathVista的逻辑推理问题中,模型需从抽象图形中推导出数字或形状的隐含规律。


GPT-4V在这方面遇到了挑战,其准确率仅为21.6%,仅略高于随机猜测的8.1%。




数值常识推理能力:MathVista中的数值常识推理涉及日常物品和名人知识。这类问题对大型模型是一大挑战。


例如,下图所示的问题中,只有GPT-4V能正确理解图像中的光学错觉现象。



然而,某些情况下,例如识别烧杯的最大容量,GPT-4V与Bard模型均表现不佳。



科学推理能力:在MathVista的科学推理问题上,GPT-4V显著优于其他大型模型。它经常能准确解析涉及特定科学领域的图中信息,并进行后续推理。




然而,某些基本概念的应用,如相对运动,仍是GPT-4V的弱点。




统计推理能力:GPT-4V在理解MathVista中的各种图表、绘图和图形方面展现出强大的统计推理能力。它能准确解答涉及图表分析的数学问题,超过了其他大型模型。




GPT-4V的自我验证能力探究


自我验证(self-verification)是一种社会心理学概念,其核心观点是个体希望他人按照他们自我感知的方式来理解他们。这导致个体主动采取行动,确保他人能看到他们的稳定状态(Talaifar & Swann, 2020)。


在实验中,GPT-4V显示出了一种类似的自我验证能力。这种能力体现在GPT-4V能够在推理过程中自主检查自身的行为,并主动纠正可能的错误。


值得注意的是,这种自我验证能力不同于仅依赖外部反馈或多轮对话来改进模型输出。


例如,在某些情况下,GPT-4V能够在单次输出中自行审核一组候选答案,从而识别出符合所有给定条件的有效答案。



在以下多步推理问题中,GPT-4V显示出了显著的能力。它不仅能够进行连贯的推理,还能验证关键步骤的有效性。特别是在遇到无效的中间结果时,如发现得出的长度为负数,GPT-4V能够主动检测并识别这些错误。


这种能力使得GPT-4V在识别问题后,能够尝试采用不同的方法来解决问题,从而优化其推理过程。



GPT-4V的自洽性应用及其局限性


自洽性(self-consistency)是在大型语言模型中广泛使用的一种技术,目的是提升模型在处理复杂推理任务时的准确性。这种方法通常包括采样多种推理路径,并选择出现频次最高的答案作为最终解。


实验验证了自洽性技术在提高GPT-4V在MathVista上的性能方面的有效性。


结果表明,自洽性对于纠正GPT-4V在视觉感知和计算中的错误,以及减少幻觉现象方面起到了显著作用。



然而,实验也揭示了自洽性的局限性。特别是在GPT-4V难以正确理解复杂的视觉场景的情况下,自洽性的改善效果并不显著。


这表明,尽管自洽性是一种有效的提升方法,但它的成功在很大程度上还是依赖于模型对视觉信息的基本理解能力。



GPT-4V在MathVista上的多轮对话能力


报告最后探讨了GPT-4V在MathVista上进行多轮人机互动对话的能力。


实验结果表明,GPT-4V擅长在多轮对话中有效地利用用户提供的提示来优化其推理过程。


这包括根据用户的引导来纠正视觉感知上的误解,修正推理逻辑中的不一致,更正相关领域的知识,甚至在人类的协助下理解和处理极其复杂的图表问题。





主要华人作者



Pan Lu是加州大学洛杉矶分校(UCLA)的博士生,是UCLA自然语言处理实验室(NLP Group)和视觉、认知、学习和自主中心(VCLA)的成员。


在此之前,他在清华大学获得计算机科学硕士学位。他曾在微软和艾伦人工智能研究院进行过实习。


他是ScienceQA和Chameleon等工作的作者。他曾荣获亚马逊博士奖学金、彭博社博士奖学金和高通创新奖学金。



Tony Xia是斯坦福大学计算机系的硕士生。此前,他在加州大学洛杉矶分校获得计算机本科学位。



Jiacheng Liu是华盛顿大学的博士生,从事常识推理、数学推理和文本生成的研究。


此前,他在伊利诺伊香槟分校取得本科学位。他曾获高通创新奖学金。



Chunyuan Li是微软雷德蒙德研究院的首席研究员。


此前,他在杜克大学获得了机器学习博士学位,师从Lawrence Carin教授。他曾担任过NeurIPS、ICML、ICLR、EMNLP和AAAI的领域主席,以及IJCV的客座编辑。


他是LLaVA、Visual Instruction Tuning和Instruction Tuning等工作的作者。



Hao Cheng是微软雷德蒙德研究院的高级研究员,同时也是华盛顿大学的兼职教授。


此前,他在华盛顿大学获得了博士学位。他是2017年Alexa Prize冠军团队的主要成员。


参考资料:


https://arxiv.org/abs/2310.02255


文章来自于微信公众号 “新智元”