
融资1000万美金,最近海外这款AI+视觉工具爆火,旨在将复杂想法可视化
融资1000万美金,最近海外这款AI+视觉工具爆火,旨在将复杂想法可视化在信息过载的时代,快速而准确地传达信息显得尤为重要。
在信息过载的时代,快速而准确地传达信息显得尤为重要。
视觉语言模型(VLM)这项 AI 技术所取得的突破令人振奋。它提供了一种更加动态、灵活的视频分析方法。VLM 使用户能够使用自然语言与输入的图像和视频进行交互,因此更加易于使用且更具适应性。这些模型可以通过 NIM 在 NVIDIA Jetson Orin 边缘 AI 平台或独立 GPU 上运行。本文将探讨如何构建基于 VLM 的视觉 AI 智能体,这些智能体无论是在边缘抑或是在云端都能运行。
还能玩纸牌游戏。
LLM的数学推理能力缺陷得到了很多研究的关注,但最近浙大、中科院等机构的学者们提出,先进模型在视觉推理方面同样不足。为此他们提出了一种多模态的视觉推理基准,并设计了一种新颖的数据合成方法。
也许视觉模型离AGI更近。
本文介绍清华大学的一篇关于长尾视觉识别的论文: Probabilistic Contrastive Learning for Long-Tailed Visual Recognition. 该工作已被 TPAMI 2024 录用,代码已开源。
语言将是获得更智能系统的重要组成部分。
与 DeiT 等使用 ViT 和 Vision-Mamba (Vim) 方法的模型相比,ViL 的性能更胜一筹。
相同性能情况下,延迟减少 46%,参数减少 25%。
目标检测领域,迎来了新进展—— Grounding DINO 1.5,IDEA研究院团队出品,在端侧就可实现实时识别。